Als «function» getaggte Fragen

Eine Zuordnung zwischen einer Reihe von Eingängen und einer Reihe von Ausgängen.





3
Kann ein neuronales Netzwerk eine Funktion und ihre funktionale Ableitung lernen?
Ich verstehe, dass neuronale Netze (NNs) unter bestimmten Voraussetzungen (sowohl für das Netz als auch für die zu approximierende Funktion) als universelle Approximatoren für beide Funktionen und ihre Ableitungen angesehen werden können. Tatsächlich habe ich eine Reihe von Tests mit einfachen, aber nicht trivialen Funktionen (z. B. Polynomen) durchgeführt, und …

1
R lineare Regression kategoriale Variable "versteckter" Wert
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 



1
Wie kann man die geometrische Intuition des Innenlebens neuronaler Netze verstehen?
Ich habe in letzter Zeit die Theorie hinter ANNs studiert und wollte die "Magie" hinter ihrer Fähigkeit zur nichtlinearen Klassifizierung mehrerer Klassen verstehen. Dies führte mich zu dieser Website, auf der geometrisch gut erklärt wird, wie diese Annäherung erreicht wird. So habe ich es verstanden (in 3D): Die verborgenen Ebenen …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.