Als «bayesian» getaggte Fragen

Die Bayes'sche Inferenz ist eine Methode der statistischen Inferenz, die darauf beruht, die Modellparameter als Zufallsvariablen zu behandeln und den Bayes'schen Satz anzuwenden, um subjektive Wahrscheinlichkeitsaussagen über die Parameter oder Hypothesen abzuleiten, abhängig vom beobachteten Datensatz.


1
Was sind prädiktive Nachkontrollen und was macht sie nützlich?
Ich verstehe die posteriore Vorhersageverteilung und habe über posteriore Vorhersageprüfungen gelesen , obwohl mir noch nicht klar ist, was sie bewirkt. Was genau ist der hintere prädiktive Check? Warum sagen manche Autoren, dass die Durchführung von Vorhersagetests im Nachhinein "die Daten zweimal verwenden" und nicht missbraucht werden sollten? (oder sogar, …


6
Was wäre ein robustes Bayes'sches Modell zur Abschätzung des Maßstabs einer annähernd normalen Verteilung?
Es gibt eine Reihe robuster Skalenschätzer . Ein bemerkenswertes Beispiel ist die mittlere absolute Abweichung, die sich auf die Standardabweichung als . In einem Bayes'schen Framework gibt es eine Reihe von Möglichkeiten, den Ort einer ungefähren Normalverteilung (z. B. einer durch Ausreißer kontaminierten Normalverteilung) zuverlässig abzuschätzen. Man könnte beispielsweise annehmen, …

5
Was sagen Konfidenzintervalle über Präzision aus?
Morey et al. (2015) argumentieren, dass Konfidenzintervalle irreführend sind und es mehrere Vorurteile gibt, die mit ihrem Verständnis zusammenhängen. Unter anderem beschreiben sie den Präzisionsfehler wie folgt: Der Genauigkeitsfehler Die Breite eines Konfidenzintervalls zeigt die Genauigkeit unseres Wissens über den Parameter an. Enge Konfidenzintervalle zeigen genaues Wissen, während breite Konfidenzfehler …

3
Entropiebasierte Widerlegung von Shalizis Bayes'schem Rückwärtspfeil des Zeitparadoxons?
In dieser Arbeit argumentiert der talentierte Forscher Cosma Shalizi, dass man, um eine subjektive Bayes'sche Sichtweise vollständig zu akzeptieren, auch ein unphysisches Ergebnis akzeptieren muss, dass der Zeitpfeil (gegeben durch den Fluss der Entropie) tatsächlich rückwärts gehen sollte . Dies ist hauptsächlich ein Versuch, gegen die maximale Entropie / vollständig …

6
Wenn ein glaubwürdiges Intervall eine flache Priorität hat, entspricht ein 95% -Konfidenzintervall einem glaubwürdigen Intervall von 95%?
Ich bin sehr neu in der Bayes'schen Statistik, und das mag eine dumme Frage sein. Dennoch: Betrachten Sie ein glaubwürdiges Intervall mit einem Prior, das eine gleichmäßige Verteilung angibt. Zum Beispiel von 0 bis 1, wobei 0 bis 1 den gesamten Bereich der möglichen Werte eines Effekts darstellt. Wäre in …

2
Warum sollten wir t Fehler anstelle von normalen Fehlern verwenden?
In diesem Blog-Beitrag von Andrew Gelman gibt es folgende Passage: Die Bayes'schen Modelle von vor 50 Jahren scheinen hoffnungslos einfach (außer natürlich für einfache Probleme), und ich gehe davon aus, dass die heutigen Bayes'schen Modelle in 50 Jahren hoffnungslos einfach erscheinen werden. (Nur als einfaches Beispiel: Wir sollten wahrscheinlich überall …

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

3
Welche Informationen sind Fisher-Informationen?
Angenommen, wir haben eine Zufallsvariable . Wenn der wahre Parameter wäre, sollte die Wahrscheinlichkeitsfunktion maximiert und die Ableitung gleich Null sein. Dies ist das Grundprinzip des Maximum-Likelihood-Schätzers.X∼f(x|θ)X∼f(x|θ)X \sim f(x|\theta)θ0θ0\theta_0 Wie ich es verstehe, ist Fisher Information definiert als I(θ)=E[(∂∂θf(X|θ))2]I(θ)=E[(∂∂θf(X|θ))2]I(\theta) = \Bbb E \Bigg[\left(\frac{\partial}{\partial \theta}f(X|\theta)\right)^2\Bigg ] Wenn also der wahre Parameter …



3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …

2
Hat Statistics.com die falsche Antwort veröffentlicht?
Statistics.com hat ein Problem der Woche veröffentlicht: Die Rate der Betrugsfälle bei Wohnversicherungen beträgt 10% (jeder zehnte Schadensfall ist betrügerisch). Ein Berater hat ein maschinelles Lernsystem vorgeschlagen, um Ansprüche zu überprüfen und sie als Betrug oder Nichtbetrug zu klassifizieren. Das System erkennt betrügerische Angaben zu 90% und klassifiziert betrugsfreie Angaben …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.