1
Automorphismus in Cai-Furer-Immerman-Geräten
In dem berühmten Gegenbeispiel zur Graphisomorphie nach Weisfeiler-Lehman (WL) wurde das folgende Gadget in dieser Arbeit von Cai, Furer und Immerman konstruiert . Sie konstruieren einen Graphen Xk=(Vk,Ek)Xk=(Vk,Ek)X_k = (V_k, E_k) gegeben durch Vk=Ak∪Bk∪Mk where Ak={ai∣1≤i≤k},Bk={bi∣1≤i≤k}, and Mk={mS∣S⊆{1,2,…,k}, |S| is even}Ek={(mS,ai)∣i∈S}∪{(mS,bi)∣i∉S}Vk=Ak∪Bk∪Mk where Ak={ai∣1≤i≤k},Bk={bi∣1≤i≤k}, and Mk={mS∣S⊆{1,2,…,k}, |S| is even}Ek={(mS,ai)∣i∈S}∪{(mS,bi)∣i∉S}V_k = A_k …