Als «pca» getaggte Fragen

Die Hauptkomponentenanalyse (PCA) ist eine lineare Dimensionsreduktionstechnik. Es reduziert ein multivariates Dataset auf einen kleineren Satz konstruierter Variablen, wobei so viele Informationen (so viel Varianz) wie möglich erhalten bleiben. Diese Variablen, Hauptkomponenten genannt, sind lineare Kombinationen der Eingangsvariablen.



5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Beste Methoden zur Faktorextraktion in der Faktoranalyse
SPSS bietet verschiedene Methoden zur Faktorextraktion an: Hauptkomponenten (die überhaupt keine Faktorenanalyse sind) Ungewichtete kleinste Quadrate Verallgemeinerte kleinste Quadrate Maximale Wahrscheinlichkeit Hauptachse Alpha Factoring Image Factoring Wenn Sie die erste Methode ignorieren, bei der es sich nicht um eine Faktoranalyse (sondern um eine Hauptkomponentenanalyse, PCA) handelt, welche dieser Methoden ist …


3
Wie führt man eine orthogonale Regression (kleinste Quadrate) über PCA durch?
Ich benutze immer lm()in R, um eine lineare Regression von auf durchzuführen . Diese Funktion gibt einen Koeffizienten so dassyyyxxxββ\betay=βx.y=βx.y = \beta x. Heute habe ich etwas über die kleinsten Fehlerquadrate gelernt und diese princomp()Funktion (Hauptkomponentenanalyse, PCA) kann verwendet werden, um sie auszuführen. Es sollte gut für mich sein (genauer). …

4
Warum bevorzugt Andrew Ng SVD und nicht EIG der Kovarianzmatrix, um PCA zu machen?
Ich studiere PCA von Andrew Ngs Coursera-Kurs und anderen Materialien. In der ersten Aufgabe des Stanford NLP-Kurses cs224n und im Vorlesungsvideo von Andrew Ng wird anstelle der Eigenvektorzerlegung der Kovarianzmatrix eine Singulärwertzerlegung durchgeführt, und Ng sagt sogar, dass SVD numerisch stabiler ist als eigendecomposition. Nach meinem Verständnis sollten wir für …

1
Gibt es eine Faktoranalyse oder eine PCA für ordinale oder binäre Daten?
Ich habe die Hauptkomponentenanalyse (PCA), Exploratory Factor Analysis (EFA) und Confirmatory Factor Analysis (CFA) abgeschlossen und Daten mit einer Likert-Skala (5-Level-Antworten: keine, ein wenig, einige, ..) als kontinuierlich behandelt Variable. Dann wiederholte ich mit Lavaan den CFA, indem ich die Variablen als kategorial definierte. Ich würde gerne wissen, welche Arten …

1
Können Freiheitsgrade eine nicht ganzzahlige Zahl sein?
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

4
Was ist los mit t-SNE vs. PCA zur Dimensionsreduktion mit R?
Ich habe eine Matrix von 336x256 Gleitkommazahlen (336 Bakteriengenome (Spalten) x 256 normalisierte Tetranukleotidfrequenzen (Zeilen), z. B. addiert sich jede Spalte zu 1). Ich erhalte gute Ergebnisse, wenn ich meine Analyse mit der Hauptkomponentenanalyse durchführe. Zuerst berechne ich die kmeans-Cluster anhand der Daten, führe dann eine PCA durch und färbe …
27 r  pca  tsne 





7
Testen auf lineare Abhängigkeit zwischen den Spalten einer Matrix
Ich habe eine Korrelationsmatrix von Sicherheitsrenditen, deren Determinante Null ist. (Dies ist ein wenig überraschend, da die Stichprobenkorrelationsmatrix und die entsprechende Kovarianzmatrix theoretisch eindeutig positiv sein sollten.) Meine Hypothese ist, dass mindestens ein Wertpapier linear von anderen Wertpapieren abhängig ist. Gibt es eine Funktion in R, die nacheinander für jede …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.