eine Methode zum Schätzen von Parametern eines statistischen Modells durch Auswahl des Parameterwerts, der die Wahrscheinlichkeit der Beobachtung der gegebenen Stichprobe optimiert.
Ich beschäftige mich mit der Maximum-Likelihood-Schätzung und lese, dass die Likelihood-Funktion das Produkt der Wahrscheinlichkeiten jeder Variablen ist. Warum ist es das Produkt? Warum nicht die Summe? Ich habe versucht, auf Google zu suchen, finde aber keine aussagekräftigen Antworten. https://en.wikipedia.org/wiki/Maximum_likelihood
Warum ist es so üblich, Schätzungen der maximalen Wahrscheinlichkeit von Parametern zu erhalten, aber Sie hören so gut wie nie von Schätzungen der erwarteten Wahrscheinlichkeitsparameter (dh basierend auf dem erwarteten Wert und nicht auf dem Modus einer Wahrscheinlichkeitsfunktion)? Ist dies in erster Linie aus historischen Gründen oder aus sachlicheren technischen …
Ich bin Mathematiker, lerne selbst Statistik und habe vor allem mit der Sprache zu kämpfen. In dem Buch, das ich verwende, gibt es das folgende Problem: Eine Zufallsvariable wird als -verteilt mit . (Natürlich können Sie für diese Frage eine beliebige Verteilung in Abhängigkeit von einem Parameter wählen.) Dann wird …
Präzision ist definiert als: p = true positives / (true positives + false positives) Ist es richtig, dass sich die Genauigkeit 1 nähert true positivesund false positivessich 0 nähert? Gleiche Frage zum Rückruf: r = true positives / (true positives + false negatives) Ich führe derzeit einen statistischen Test durch, …
Kontext Der multivariate Gauß-Faktor wird beim maschinellen Lernen häufig verwendet. Die folgenden Ergebnisse werden in vielen ML-Büchern und -Kursen ohne die Ableitungen verwendet. Gegebene Daten in Form einer Matrix der Dimensionen , wenn wir annehmen, dass die Daten einer variaten Gaußschen Verteilung mit Parametern mean ( ) und covarianz matrix …
Frequentistische Statistiken sind für mich gleichbedeutend mit dem Versuch, Entscheidungen zu treffen, die für alle möglichen Stichproben gut sind. Dh eine frequentistische Entscheidungsregel sollte immer versuchen, das frequentistische Risiko zu minimieren, das von einer Verlustfunktion und dem wahren Naturzustand \ theta_0 abhängt :Lδδ\deltaLLLθ0θ0\theta_0 Rfreq=Eθ0(L(θ0,δ(Y))Rfreq=Eθ0(L(θ0,δ(Y))R_\mathrm{freq}=\mathbb{E}_{\theta_0}(L(\theta_0,\delta(Y)) Wie hängt die maximale Wahrscheinlichkeitsschätzung mit …
Betrachten wir einen Vektor von Parametern , mit den Parameter von Interesse, und ein Störparameter.θ 1 θ 2(θ1,θ2)(θ1,θ2)(\theta_1, \theta_2)θ1θ1\theta_1θ2θ2\theta_2 Wenn die Wahrscheinlichkeit , dass aus den Daten aufgebaut ist x , die Profil Wahrscheinlichkeit für θ 1 ist definiert als L P ( θ 1 ; x ) = L …
Die Grundidee der Statistik zur Schätzung von Parametern ist die maximale Wahrscheinlichkeit . Ich frage mich, was der entsprechende Gedanke beim maschinellen Lernen ist. Frage 1: Wäre es fair zu sagen, dass die Grundidee des maschinellen Lernens zur Schätzung von Parametern lautet: "Verlustfunktionen"? [Anmerkung: Ich habe den Eindruck, dass Algorithmen …
Hallo, ich habe zwei Probleme, die wie natürliche Kandidaten für mehrstufige / gemischte Modelle klingen, die ich nie benutzt habe. Die einfachere Variante, die ich als Einführung versuchen möchte, sieht wie folgt aus: Die Daten sehen aus wie viele Zeilen des Formulars x y innergroup outergroup wobei x eine numerische …
Hintergrund: Hinweis: Mein Datensatz und R-Code sind unter dem Text enthalten Ich möchte AIC verwenden, um zwei Modelle mit gemischten Effekten zu vergleichen, die mit dem lme4-Paket in R erstellt wurden. Jedes Modell hat einen festen und einen zufälligen Effekt. Der festgelegte Effekt unterscheidet sich zwischen den Modellen, der Zufallseffekt …
Der Eindruck, den ich aufgrund mehrerer Veröffentlichungen, Bücher und Artikel gewonnen habe, ist, dass die empfohlene Methode zum Anpassen einer Wahrscheinlichkeitsverteilung an einen Datensatz die Verwendung der Maximum Likelihood Estimation (MLE) ist. Als Physiker ist es jedoch intuitiver, das PDF des Modells mit Hilfe der kleinsten Quadrate an das empirische …
Kontext : Hierarchische Regression mit einigen fehlenden Daten. Frage : Wie verwende ich die FIML-Schätzung (Full Information Maximum Likelihood), um fehlende Daten in R zu beheben? Gibt es ein Paket, das Sie empfehlen würden, und was sind typische Schritte? Auch Online-Ressourcen und Beispiele wären sehr hilfreich. PS : Ich bin …
Neulich wurde mir diese Frage gestellt und ich hatte sie noch nie in Betracht gezogen. Meine Intuition kommt von den Vorteilen jedes Schätzers. Die größte Wahrscheinlichkeit besteht darin, dass wir uns auf den Prozess der Datengenerierung verlassen können, da im Gegensatz zur Methode der Momente das Wissen über die gesamte …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.