Ein Bereich des maschinellen Lernens, der sich mit dem Lernen hierarchischer Darstellungen der Daten befasst, hauptsächlich mit tiefen neuronalen Netzen.
Wenn tiefe neuronale Netze als universelle Funktionsapproximatoren betrachtet werden, ist eine Basiserweiterung wirklich notwendig? Oder wäre dies fallspezifisch? Wenn man beispielsweise drei quantitative X-Variablen hat, wäre es dann von Vorteil, die Anzahl der Variablen durch Einführung von Wechselwirkungen, Polynomen usw. zu erweitern? Dies scheint beispielsweise bei RFs und SVM von …
TL; DR (zu lang, nicht gelesen): Ich arbeite an einem Zeitreihen-Vorhersageproblem, das ich mit Deep Learning (Keras) als Regressionsproblem formuliere. Ich möchte die Pearson-Korrelation zwischen meiner Vorhersage und den wahren Bezeichnungen optimieren. Ich bin verwirrt über die Tatsache, dass die Verwendung von MSE als Proxy tatsächlich zu besseren Ergebnissen (in …
Ist es beim Deep Learning und seiner Anwendung auf Computer Vision möglich zu erkennen, welche Funktionen diese beiden Arten von Pooling-Extrakten bieten? Kann man beispielsweise sagen, dass der maximale Pool Kanten extrahiert? Können wir etwas Ähnliches in Bezug auf Mean Pooling sagen? PS Sie können gerne empfehlen, ob der Stapelüberlauf …
Ich habe das folgende Setup für ein Forschungsprojekt im Bereich Finanzen / Maschinelles Lernen an meiner Universität: Ich wende ein (Deep) Neural Network (MLP) mit der folgenden Struktur in Keras / Theano an, um überdurchschnittliche Aktien (Label 1) von unterdurchschnittlichen Aktien zu unterscheiden (Label 1). Etikett 0). Erstens verwende ich …
So wie ich es verstehe, führen tiefe neuronale Netze "Repräsentationslernen" durch, indem sie Merkmale zusammenfügen. Dies ermöglicht das Lernen sehr hochdimensionaler Strukturen in den Merkmalen. Natürlich handelt es sich um ein parametrisches Modell mit einer festen Anzahl von Parametern, daher besteht die übliche Einschränkung, dass die Komplexität des Modells möglicherweise …
Ich bin ziemlich neu in der Ziffernerkennung und habe festgestellt, dass viele Tutorials die SVM-Klassifizierung verwenden, zum Beispiel: http://hanzratech.in/2015/02/24/handwritten-digit-recognition-using-opencv-sklearn-and-python.html http://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html Ich würde gerne wissen, ob es für dieses Tool (domänenspezifische) Vorteile gibt, verglichen mit z Deep Learning neuronale Netze Klassifizierung nach k-Mitteln Vielen Dank für jeden Kommentar. Klarstellung, warum SVM …
Ist es möglich, Ergebnisse auf dem neuesten Stand der Technik zu erzielen, indem nur die Rückausbreitung verwendet wird (ohne Vorschulung )? Oder ist es so, dass alle rekordverdächtigen Ansätze irgendeine Form von Vorschulung verwenden? Ist die Rückausbreitung allein gut genug?
Zum Aufwärmen mit wiederkehrenden neuronalen Netzen versuche ich, eine Sinuswelle von einer anderen Sinuswelle einer anderen Frequenz vorherzusagen. Mein Modell ist eine einfache RNN, deren Vorwärtsdurchlauf wie folgt ausgedrückt werden kann: wobeiσdie Sigmoïd-Funktion ist.rtzt=σ(Win⋅xt+Wrec⋅rt−1))=Wout⋅rtrt=σ(Win⋅xt+Wrec⋅rt−1))zt=Wout⋅rt \begin{aligned} r_t &= \sigma(W_{in} \cdot x_t + W_{rec} \cdot r_{t-1}))\\ z_t &= W_{out} \cdot r_t \end{aligned} …
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
https://www.tensorflow.org/ Alle Projekte auf TensorFlow, die ich in GitHub gesehen habe, implementieren eine Art neuronales Netzwerkmodell. Angesichts der Tatsache, dass TensorFlow eine Verbesserung gegenüber der DAG darstellt (es ist nicht mehr azyklisch), habe ich mich gefragt, ob ein inhärenter Mangel es für ein allgemeines Modell des maschinellen Lernens ungeeignet macht. …
Ich bin neu im tiefen Lernen, daher könnte dies eine triviale Frage sein. Aber ich frage mich, warum Deep Learning (oder neuronales Netzwerk) bei kleinen beschrifteten Daten nicht sehr gut funktioniert. Unabhängig davon, welche Forschungsarbeiten ich gelesen habe, sind ihre Datensätze riesig. Intuitiv ist das nicht überraschend, da unser Gehirn …
Ich versuche zu verstehen, wie rnns verwendet werden können, um Sequenzen anhand eines einfachen Beispiels vorherzusagen. Hier ist mein einfaches Netzwerk, bestehend aus einem Eingang, einem versteckten Neuron und einem Ausgang: Das versteckte Neuron ist die Sigmoidfunktion, und die Ausgabe wird als einfache lineare Ausgabe angesehen. Ich denke, das Netzwerk …
Ich bin sehr neu in RBMs und versuche jetzt, ein RBM-Programm zu schreiben. Entschuldigung, wenn dies eine dumme Frage ist und / oder hier bereits beantwortet wurde. Ich habe einige Artikel online gelesen und hier Fragen gestellt, aber ich kann nichts darüber finden , wie die Verzerrungen (oder Verzerrungsgewichte) aktualisiert …
Ich habe gerade angefangen, das Autoencoder- Paket in R zu verwenden. Eingaben in die autoencode()Funktion umfassen Lambda, Beta, Rho und Epsilon. Was sind die Grenzen für diese Werte? Variieren sie für jede Aktivierungsfunktion? Werden diese Parameter "Hyperparameter" genannt? Ist rho = .01 unter der Annahme eines spärlichen Autoencoders gut für …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.