Als «cross-validation» getaggte Fragen

Wiederholtes Zurückhalten von Teilmengen der Daten während der Modellanpassung, um die Modellleistung für die Teilmengen der zurückgehaltenen Daten zu quantifizieren.

5
Können Sie maschinelles Lernen mit CV / Bootstrap trainieren?
Diese Frage mag zu offen sein, um eine endgültige Antwort zu erhalten, aber hoffentlich nicht. Algorithmen für maschinelles Lernen, wie SVM, GBM, Random Forest usw., haben im Allgemeinen einige freie Parameter, die über eine Faustregel hinaus auf jeden Datensatz abgestimmt werden müssen. Dies wird im Allgemeinen mit einer Art Neuabtastungstechnik …


1
Kreuzvalidierungsmissbrauch (Reporting-Leistung für den besten Hyperparameter-Wert)
Kürzlich bin ich auf ein Dokument gestoßen, das die Verwendung eines k-NN- Klassifikators für einen bestimmten Datensatz vorschlägt . Die Autoren verwendeten alle verfügbaren Datenproben, um eine k-fache Kreuzvalidierung für verschiedene k- Werte durchzuführen und Kreuzvalidierungsergebnisse der besten Hyperparameterkonfiguration zu melden. Meines Wissens ist dieses Ergebnis verzerrt, und sie sollten …

1
Fehlermetriken zur Kreuzvalidierung von Poisson-Modellen
Ich überprüfe ein Modell, das versucht, eine Zählung vorherzusagen. Wenn dies ein Problem mit der binären Klassifizierung wäre, würde ich die Out-of-Fold-AUC berechnen, und wenn dies ein Regressionsproblem wäre, würde ich den Out-of-Fold-RMSE oder MAE berechnen. Welche Fehlermetriken kann ich für ein Poisson-Modell verwenden, um die "Genauigkeit" der Vorhersagen außerhalb …

3
K-fach vs. Monte Carlo Kreuzvalidierung
Ich versuche verschiedene Kreuzvalidierungsmethoden zu erlernen, hauptsächlich mit der Absicht, sie auf überwachte multivariate Analysetechniken anzuwenden. Zwei, auf die ich gestoßen bin, sind K-Fold- und Monte-Carlo-Kreuzvalidierungstechniken. Ich habe gelesen, dass K-Fold eine Variation von Monte Carlo ist, aber ich bin mir nicht sicher, was genau die Definition von Monte Carlo …

2
Warum geschichtete Kreuzvalidierung verwenden? Warum schadet dies nicht der Varianz?
Mir wurde gesagt, dass es von Vorteil ist, eine geschichtete Kreuzvalidierung zu verwenden, insbesondere wenn die Antwortklassen nicht ausgeglichen sind. Wenn ein Zweck der Kreuzvalidierung darin besteht, die Zufälligkeit unserer ursprünglichen Trainingsdatenstichprobe zu berücksichtigen, würde es sicher dagegen wirken, wenn Sie für jede Falte die gleiche Klassenverteilung festlegen, es sei …

1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 


1
Können Freiheitsgrade eine nicht ganzzahlige Zahl sein?
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

1
Ist die Kreuzvalidierung ein geeigneter Ersatz für das Validierungsset?
In der Textklassifikation habe ich ein Trainingsset mit ca. 800 Samples und ein Testset mit ca. 150 Samples. Das Test-Set wurde noch nie verwendet und wartet darauf, bis zum Ende verwendet zu werden. Ich verwende das gesamte 800-Muster-Trainingsset mit 10-facher Kreuzvalidierung, während ich Klassifikatoren und Funktionen abstimme und optimiere. Dies …

4
Warum gibt es eine Asymmetrie zwischen dem Trainingsschritt und dem Bewertungsschritt?
Insbesondere in der Verarbeitung natürlicher Sprachen ist bekannt, dass maschinelles Lernen in zwei Schritten ablaufen sollte, einem Trainingsschritt und einem Bewertungsschritt, und sie sollten unterschiedliche Daten verwenden. Warum ist das? Intuitiv hilft dieser Prozess, eine Überanpassung der Daten zu vermeiden, aber ich sehe keinen (informationstheoretischen) Grund, warum dies der Fall …

2
Varianzschätzungen in der k-fachen Kreuzvalidierung
Die K-fache Kreuzvalidierung kann verwendet werden, um die Verallgemeinerungsfähigkeit eines gegebenen Klassifikators abzuschätzen. Kann (oder sollte) ich aus allen Validierungsläufen auch eine gepoolte Varianz berechnen, um eine bessere Schätzung der Varianz zu erhalten? Wenn nein, warum? Ich habe Papiere gefunden, die die gepoolte Standardabweichung über Kreuzvalidierungsläufe verwenden . Ich habe …


4
Interne versus externe Kreuzvalidierung und Modellauswahl
Mein Verständnis ist, dass wir mit Kreuzvalidierung und Modellauswahl versuchen, zwei Dinge anzusprechen: P1 . Schätzen Sie den zu erwartenden Bevölkerungsverlust beim Training mit unserer Stichprobe P2 . Messen Sie und berichten Sie unsere Unsicherheit dieser Schätzung (Varianz, Konfidenzintervalle, Verzerrung, etc.) Es scheint üblich zu sein, wiederholte Kreuzvalidierungen durchzuführen, da …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.