Einbeziehung zusätzlicher Einschränkungen (normalerweise eine Strafe für die Komplexität) in den Modellanpassungsprozess. Wird verwendet, um eine Überanpassung zu verhindern / die Vorhersagegenauigkeit zu verbessern.
Betrachten Sie die folgenden drei Phänomene. Steins Paradoxon: Angesichts einiger Daten aus der multivariaten Normalverteilung in ist der Stichprobenmittelwert kein sehr guter Schätzer für den wahren Mittelwert. Man kann eine Schätzung mit kleinerem mittleren Fehlerquadrat erhalten, wenn man alle Koordinaten des Stichprobenmittelwerts gegen Null schrumpft [oder gegen ihren Mittelwert oder …
Die Weihnachtszeit hat mir die Möglichkeit gegeben, mich mit den Elementen des statistischen Lernens am Feuer zu entspannen . Aus ökonometrischer Sicht (häufig) habe ich Probleme, die Verwendung von Schrumpfungsmethoden wie Ridge Regression, Lasso und Least Angle Regression (LAR) zu verstehen. Normalerweise interessiert mich die Parameterschätzung selbst und das Erreichen …
Ich verstehe, dass die Grat-Regressionsschätzung das , das die Restsumme des Quadrats und eine Strafe für die Größe von β minimiertββ\betaββ\beta βridge=(λID+X′X)−1X′y=argmin[RSS+λ∥β∥22]βridge=(λID+X′X)−1X′y=argmin[RSS+λ‖β‖22]\beta_\mathrm{ridge} = (\lambda I_D + X'X)^{-1}X'y = \operatorname{argmin}\big[ \text{RSS} + \lambda \|\beta\|^2_2\big] Allerdings verstehe ich die Bedeutung der Tatsache, dass sich von dadurch unterscheidet, dass nur eine kleine Konstante …
Um Probleme bei der Modellauswahl zu lösen, werden durch eine Reihe von Methoden (LASSO, Ridge-Regression usw.) die Koeffizienten der Prädiktorvariablen gegen Null gesenkt. Ich suche nach einer intuitiven Erklärung, warum dies die Vorhersagefähigkeit verbessert. Wenn der wahre Effekt der Variablen tatsächlich sehr groß war, warum führt ein Verkleinern des Parameters …
Betrachten Sie ein gutes altes Regressionsproblem mit Prädiktoren und Stichprobengröße . Die übliche Weisheit ist, dass der OLS-Schätzer zu hoch ist und im Allgemeinen von dem Kamm-Regressions-Schätzer übertroffen wird:Es ist Standard, eine Kreuzvalidierung zu verwenden, um einen optimalen Regularisierungsparameter . Hier verwende ich einen 10-fachen Lebenslauf. Klarstellungsaktualisierung: Wenn , verstehe …
Was ist die genaue Formel, die in R lm() für das angepasste R-Quadrat verwendet wird? Wie kann ich das interpretieren? Angepasste R-Quadrat-Formeln Es scheinen verschiedene Formeln zur Berechnung des bereinigten R-Quadrats zu existieren. Wherry-Formel: 1−(1−R2)(n−1)(n−v)1−(1−R2)(n−1)(n−v)1-(1-R^2)\frac{(n-1)}{(n-v)} McNemars Formel:1−(1−R2)(n−1)(n−v−1)1−(1−R2)(n−1)(n−v−1)1-(1-R^2)\frac{(n-1)}{(n-v-1)} Gottes Formel:1−(1−R2)(n+v−1)(n−v−1)1−(1−R2)(n+v−1)(n−v−1)1-(1-R^2)\frac{(n+v-1)}{(n-v-1)} Steins Formel:1−[(n−1)(n−k−1)(n−2)(n−k−2)(n+1)n](1−R2)1−[(n−1)(n−k−1)(n−2)(n−k−2)(n+1)n](1−R2)1-\big[\frac{(n-1)}{(n-k-1)}\frac{(n-2)}{(n-k-2)}\frac{(n+1)}{n}\big](1-R^2) Lehrbuchbeschreibungen Laut Field's Lehrbuch, Discovering Statistics Using R (2012, …
Ich habe vor etwas wie LassoRegression drei Hauptgründe für die Standardisierung von Variablen gelesen : 1) Interpretierbarkeit von Koeffizienten. 2) Fähigkeit, die Wichtigkeit des Koeffizienten nach der relativen Größe der Schätzungen des Nachschrumpfungskoeffizienten zu ordnen. 3) Keine Notwendigkeit zum Abfangen. Aber ich wundere mich über den wichtigsten Punkt. Haben wir …
Das ursprüngliche elastische Netzpapier Zou & Hastie (2005) Regularisierung und Variablenauswahl über das elastische Netz führten die elastische Nettoverlustfunktion für die lineare Regression ein (hier gehe ich davon aus, dass alle Variablen zentriert und auf die Einheitsvarianz skaliert sind): L=1n∥∥y−Xβ∥∥2+λ1∥β∥1+λ2∥β∥22,L=1n‖y−Xβ‖2+λ1‖β‖1+λ2‖β‖22,\mathcal L = \frac{1}{n}\big\lVert y - X\beta\big\rVert^2 + \lambda_1\lVert \beta\rVert_1 + …
Ich habe einmal eine Methode gehört, das Lasso zweimal zu verwenden (wie ein Doppel-Lasso), bei der Sie Lasso für die ursprüngliche Menge von Variablen ausführen, z. B. S1, eine dünn besetzte Menge mit der Bezeichnung S2 erhalten und dann erneut Lasso für die Menge S2 ausführen, um die Menge S3 …
Die LASSO-Regression verringert die Koeffizienten auf Null und bietet so eine effektive Modellauswahl. Ich glaube, dass es in meinen Daten bedeutsame Wechselwirkungen zwischen nominalen und kontinuierlichen Kovariaten gibt. Nicht unbedingt sind jedoch die "Haupteffekte" des wahren Modells aussagekräftig (nicht Null). Natürlich weiß ich das nicht, da das wahre Modell unbekannt …
Für ein lineares Modell ist der Schrumpfterm immer .y=β0+xβ+εy=β0+xβ+εy=\beta_0+x\beta+\varepsilonP( β)P(β)P(\beta) Was ist der Grund, warum wir den Verzerrungsbegriff nicht verkleinern ? Sollen wir den Bias-Term in den neuronalen Netzwerkmodellen verkleinern?β0β0\beta_0
Präzision ist definiert als: p = true positives / (true positives + false positives) Ist es richtig, dass sich die Genauigkeit 1 nähert true positivesund false positivessich 0 nähert? Gleiche Frage zum Rückruf: r = true positives / (true positives + false negatives) Ich führe derzeit einen statistischen Test durch, …
Ich habe über den James-Stein-Schätzer gelesen. In diesen Anmerkungen wird definiert als θ^=(1−p−2∥X∥2)Xθ^=(1−p−2‖X‖2)X \hat{\theta}=\left(1 - \frac{p-2}{\|X\|^2}\right)X Ich habe den Beweis gelesen, verstehe aber die folgende Aussage nicht: Geometrisch schrumpft der James-Stein-Schätzer jede Komponente von zum Ursprung ...XXX Was bedeutet "Verkleinert jede Komponente von zum Ursprung" genau? Ich dachte an etwas …
Ich habe eine Frage zur Berechnung des James-Stein-Schrumpfungsfaktors in dem 1977 erschienenen Scientific American Paper von Bradley Efron und Carl Morris, "Stein's Paradox in Statistics" . Ich habe die Daten für die Baseballspieler gesammelt und sie sind unten angegeben: Name, avg45, avgSeason Clemente, 0.400, 0.346 Robinson, 0.378, 0.298 Howard, 0.356, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.