Als «shrinkage» getaggte Fragen

Einbeziehung zusätzlicher Einschränkungen (normalerweise eine Strafe für die Komplexität) in den Modellanpassungsprozess. Wird verwendet, um eine Überanpassung zu verhindern / die Vorhersagegenauigkeit zu verbessern.




5
James-Stein-Schrumpfung in freier Wildbahn?
Ich bin von der Idee der James-Stein-Schrumpfung angetan (dh dass eine nichtlineare Funktion einer einzelnen Beobachtung eines Vektors möglicherweise unabhängiger Normalen ein besserer Schätzer für die Mittelwerte der Zufallsvariablen sein kann, wobei "besser" durch Quadratfehler gemessen wird ). Ich habe es jedoch noch nie in der angewandten Arbeit gesehen. Klar …

4
Optimale Elfmeterauswahl für Lasso
Gibt es analytische Ergebnisse oder experimentelle Arbeiten zur optimalen Wahl des Koeffizienten für den Strafzeitpunkt ? ℓ1ℓ1\ell_1Mit optimal meine ich einen Parameter, der die Wahrscheinlichkeit der Auswahl des besten Modells maximiert oder den erwarteten Verlust minimiert. Ich frage, weil es oft unpraktisch ist, den Parameter durch Kreuzvalidierung oder Bootstrap zu …

2
Was ist Schrumpfung?
Das Wort Schrumpfung wird in bestimmten Kreisen häufig verwendet. Aber was Schrumpfung ist, scheint es keine klare Definition zu geben. Wenn ich eine Zeitreihe (oder eine Sammlung von Beobachtungen eines Prozesses) habe, auf welche Weise kann ich eine Art empirischen Schrumpfens an der Reihe messen? Über welche verschiedenen Arten der …

1
Intuition für die Freiheitsgrade des LASSO
Zou u.a. "Auf den" Freiheitsgraden "des Lassos" (2007) zeigen, dass die Anzahl der Koeffizienten ungleich Null eine unvoreingenommene und konsistente Schätzung für die Freiheitsgrade des Lassos ist. Es scheint mir ein wenig eingängig zu sein. Angenommen, wir haben ein Regressionsmodell (wobei die Variablen den Mittelwert Null haben). y=βx+ε.y=βx+ε.y=\beta x + …

2
Wenn die Schrumpfung auf clevere Weise angewendet wird, funktioniert sie für effizientere Schätzer immer besser?
Angenommen , ich habe zwei Schätzern ß 1 und β 2 , die konsistente Schätzer des gleichen Parameters β 0 und so , dass √βˆ1β^1\widehat{\beta}_1βˆ2β^2\widehat{\beta}_2β0β0\beta_0n−−√(βˆ1−β0)→dN(0,V1),n−−√(βˆ2−β0)→dN(0,V2)n(β^1−β0)→dN(0,V1),n(β^2−β0)→dN(0,V2)\sqrt{n}(\widehat{\beta}_1 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_1), \quad \sqrt{n}(\widehat{\beta}_2 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_2) mitV1≤V2V1≤V2V_1 \leq V_2in dem psd Sinne. Somit asymptotisch β 1ist effizienter als β 2. Diese …

1
Auswahl des Bereichs und der Gitterdichte für den Regularisierungsparameter in LASSO
In der Zwischenzeit studiere ich LASSO (Operator für geringste absolute Schrumpfung und Auswahl). Ich sehe, dass der optimale Wert für den Regularisierungsparameter durch Kreuzvalidierung ausgewählt werden kann. Ich sehe auch in der Gratregression und vielen Methoden, die Regularisierung anwenden, dass wir CV verwenden können, um den optimalen Regularisierungsparameter zu finden …

1
James-Stein-Schätzer mit ungleichen Varianzen
Jede Aussage, die ich vom James-Stein-Schätzer finde, geht davon aus, dass die zu schätzenden Zufallsvariablen dieselbe (und Einheits-) Varianz haben. Alle diese Beispiele erwähnen jedoch auch, dass der JS-Schätzer verwendet werden kann, um Mengen zu schätzen, die nichts miteinander zu tun haben. Das Wikipedia-Beispiel ist die Lichtgeschwindigkeit, der Teekonsum in …

3
So erhalten Sie das Konfidenzintervall für die Änderung des Populations-R-Quadrats
Als einfaches Beispiel wird angenommen, dass es zwei lineare Regressionsmodelle gibt Modell 1 hat drei Prädiktoren x1a, x2bundx2c Modell 2 hat drei Prädiktoren aus Modell 1 und zwei zusätzliche Prädiktoren x2aundx2b Es gibt eine Populationsregressionsgleichung, bei der die erklärte Populationsvarianz für Modell 1 für Modell 2 . Die durch Modell …

4
Lasso-ing die Reihenfolge einer Verzögerung?
Angenommen, ich habe Längsschnittdaten der Form (ich habe mehrere Beobachtungen, dies ist nur die Form einer einzigen). Ich bin an Einschränkungen für interessiert . Ein uneingeschränktes entspricht der Einnahme von mit .Y=(Y1,…,YJ)∼N(μ,Σ)Y=(Y1,…,YJ)∼N(μ,Σ)\mathbf Y = (Y_1, \ldots, Y_J) \sim \mathcal N(\mu, \Sigma)ΣΣ\SigmaΣΣ\SigmaYj=αj+∑ℓ=1j−1ϕℓjYj−ℓ+εjYj=αj+∑ℓ=1j−1ϕℓjYj−ℓ+εj Y_j = \alpha_j + \sum_{\ell = 1} ^ {j …



2
Merkmalsauswahl auf einem Bayes'schen hierarchischen verallgemeinerten linearen Modell
Ich möchte eine hierarchische GLM schätzen, aber mit Merkmalsauswahl, um zu bestimmen, welche Kovariaten auf Bevölkerungsebene relevant sind, um sie einzubeziehen. Angenommen, ich habe GGG Gruppen mit NNN Beobachtungen und KKK möglichen Kovariaten. Das heißt, ich habe eine Entwurfsmatrix von Kovariaten , Ergebnissen . Die Koeffizienten für diese Kovariaten sind …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.