Als «prediction» getaggte Fragen

Vorhersage unbekannter Zufallsgrößen anhand eines statistischen Modells.


9
Wahrscheinlichkeit eines einzelnen zukünftigen Ereignisses im wirklichen Leben: Was bedeutet es, wenn sie sagen, dass "Hillary eine 75% ige Gewinnchance hat"?
Da es sich bei der Wahl um eine einmalige Veranstaltung handelt, kann dieses Experiment nicht wiederholt werden. Was genau bedeutet die Aussage "Hillary hat eine 75% ige Gewinnchance" technisch? Ich suche eine statistisch korrekte Definition, keine intuitive oder konzeptionelle. Ich bin ein Amateur-Statistik-Fan, der versucht, auf diese Frage zu antworten, …

6
Variablenauswahl für prädiktive Modellierung im Jahr 2016 wirklich erforderlich?
Diese Frage wurde bereits vor einigen Jahren im Lebenslauf gestellt. Angesichts von 1) um Größenordnungen besserer Computertechnologie (z. B. Parallel Computing, HPC usw.) und 2) neuerer Techniken, z. Erstens einen Kontext. Nehmen wir an, das Ziel ist nicht das Testen von Hypothesen, nicht das Schätzen von Effekten, sondern die Vorhersage …


6
Standardfehler für die Lasso-Vorhersage mit R
Ich versuche, ein LASSO-Modell für die Vorhersage zu verwenden, und ich muss Standardfehler abschätzen. Sicher hat schon jemand ein Paket dazu geschrieben. Aber meines Erachtens gibt keines der CRAN-Pakete, die mit einem LASSO Vorhersagen treffen, Standardfehler für diese Vorhersagen zurück. Meine Frage lautet also: Gibt es ein Paket oder einen …


5
Vorhersage in der Cox-Regression
Ich mache eine multivariate Cox-Regression, ich habe meine signifikanten unabhängigen Variablen und Beta-Werte. Das Modell passt sehr gut zu meinen Daten. Jetzt möchte ich mein Modell verwenden und das Überleben einer neuen Beobachtung vorhersagen. Ich bin mir nicht sicher, wie ich das mit einem Cox-Modell machen soll. Bei einer linearen …

2
Vorhersageintervall für lmer () -Mischeffektmodell in R
Ich möchte ein Vorhersageintervall für eine Vorhersage aus einem lmer () -Modell erhalten. Ich habe eine Diskussion darüber gefunden: http://rstudio-pubs-static.s3.amazonaws.com/24365_2803ab8299934e888a60e7b16113f619.html http://glmm.wikidot.com/faq Sie scheinen jedoch die Unsicherheit der zufälligen Effekte nicht zu berücksichtigen. Hier ist ein konkretes Beispiel. Ich rase Goldfisch. Ich habe Daten zu den letzten 100 Rennen. Ich möchte …


2
Wenn nur die Vorhersage von Interesse ist, warum sollte man dann Lasso über dem Kamm verwenden?
Auf Seite 223 in Eine Einführung in das statistische Lernen fassen die Autoren die Unterschiede zwischen Gratregression und Lasso zusammen. Sie liefern ein Beispiel (Abbildung 6.9) für den Fall, dass "Lasso dazu neigt, die Gratregression in Bezug auf Bias, Varianz und MSE zu übertreffen". Ich verstehe, warum Lasso wünschenswert sein …

3
Interpretation einfacher Vorhersagen zu Odds Ratios in der logistischen Regression
Ich bin etwas neu in der Verwendung der logistischen Regression und ein bisschen verwirrt von einer Diskrepanz zwischen meinen Interpretationen der folgenden Werte, die ich für gleich gehalten hätte: potenzierte Beta-Werte vorhergesagte Wahrscheinlichkeit des Ergebnisses anhand von Beta-Werten. Hier ist eine vereinfachte Version des von mir verwendeten Modells, bei dem …

3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …



2
Welche nicht-bayesianischen Methoden gibt es für prädiktive Schlussfolgerungen?
In der Bayes'schen Inferenz wird eine prädiktive Verteilung für zukünftige Daten abgeleitet, indem unbekannte Parameter herausintegriert werden. Die Integration über die posteriore Verteilung dieser Parameter ergibt eine posteriore Vorhersageverteilung - eine Verteilung für zukünftige Daten, die von den bereits beobachteten abhängig ist. Welche nicht-bayesianischen Methoden für die prädiktive Inferenz berücksichtigen …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.