Die Matrixzerlegung bezieht sich auf den Prozess der Faktorisierung einer Matrix in ein Produkt kleinerer Matrizen. Durch Zerlegen einer großen Matrix können viele Matrixalgorithmen effizient ausgeführt werden.
/ edit: Weitere Folgemaßnahmen können jetzt mit irlba :: prcomp_irlba durchgeführt werden / edit: verfolge meinen eigenen Beitrag. irlbaVerfügt nun über die Argumente "center" und "scale", mit denen Sie Hauptkomponenten berechnen können, z. pc <- M %*% irlba(M, nv=5, nu=0, center=colMeans(M), right_only=TRUE)$v Ich habe eine große, spärliche Anzahl Matrixvon Funktionen, …
Bei einer PCA (oder SVD) Angleichung der Matrix XXX mit einer Matrix X , wir wissen , dass X die beste Low-Rang Approximation ist X .X^X^\hat XX^X^\hat XXXX Ist dies nach der induzierten & Par; ⋅ & par;2∥⋅∥2\parallel \cdot \parallel_2 Norm (dh der größten Eigenwertnorm) oder nach der Frobenius & …
In dieser Frage geht es um eine effiziente Methode zur Berechnung von Hauptkomponenten. Viele Texte zur linearen PCA befürworten die Verwendung der Singulärwertzerlegung der fallweisen Daten . Das heißt, wenn wir Daten und wollen die Variablen (seine ersetzen Spalten ) von Hauptkomponenten, wir tun SVD: X = U S V …
Ich muss die inverse Matrix berechnen und habe die solveFunktion verwendet. Während es bei kleinen Matrizen gut funktioniert solve, ist es bei großen Matrizen tendenziell sehr langsam. Ich habe mich gefragt, ob es eine andere Funktion oder Kombination von Funktionen gibt (über SVD, QR, LU oder andere Zerlegungsfunktionen), die mir …
Ich habe kürzlich Skillicorns Buch über Matrixzerlegungen gelesen und war ein bisschen enttäuscht, da es sich an ein junges Publikum richtete. Ich möchte (für mich und andere) eine kurze Bibliographie wesentlicher Arbeiten (Umfragen, aber auch bahnbrechende Arbeiten) zu Matrixzerlegungen zusammenstellen. Was ich in erster Linie im Auge habe, ist etwas …
Angenommen, ich habe eine dichte Matrix der Größe und der SVD-ZerlegungIn ich die SVD berechnen sich wie folgt: .EINEIN \textbf{A}m × nm×nm \times nA = U S V⊤.EIN=USV⊤.\mathbf{A}=\mathbf{USV}^\top.Rsvd(A) Wenn eine neue -te Zeile zu hinzugefügt wird , kann man die neue SVD-Zerlegung basierend auf der alten (dh unter Verwendung von …
Betrachten Sie eine einfache Zeitreihe: > tp <- seq_len(10) > tp [1] 1 2 3 4 5 6 7 8 9 10 Für diese Zeitreihe können wir eine Adjazenzmatrix berechnen, die die zeitlichen Verknüpfungen zwischen Stichproben darstellt. Bei der Berechnung dieser Matrix wird zum Zeitpunkt 0 eine imaginäre Stelle hinzugefügt, …
Geschlossen. Diese Frage ist nicht zum Thema . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so dass es beim Thema für Kreuz Validated. Geschlossen im vergangenen Jahr . Könnte sich jemand einen R- Code einfallen lassen, um eine Ellipse aus den Eigenwerten und …
Bei gegebener Matrix findet die nicht negative Matrixfaktorisierung (NMF) zwei nicht negative Matrizen und ( dh mit allen Elementen ) zur Darstellung der zerlegten Matrix als:Vm×nVm×n\mathbf V^{m \times n}Wm×kWm×k\mathbf W^{m \times k}Hk×nHk×n\mathbf H^{k \times n}≥0≥0\ge 0 V≈WH,V≈WH,\mathbf V \approx \mathbf W\mathbf H, Zum Beispiel, indem Sie verlangen, dass nicht negative …
Meine Frage bezieht sich auf eine in geoR:::.negloglik.GRFoder ausgenutzte Berechnungstechnik geoR:::solve.geoR. In einem linearen gemischten Modellaufbau gilt: Y=Xβ+Zb+eY=Xβ+Zb+e Y=X\beta+Zb+e wobei ββ\beta und bbb die festen bzw. zufälligen Effekte sind. Auch ist Σ=cov(Y)Σ=cov(Y)\Sigma=\text{cov}(Y) Bei der Abschätzung der Effekte muss berechnet werden, was normalerweise mit etwas wie , aber manchmal ist fast …
Ich arbeite an einem Projekt zur kollaborativen Filterung (CF), dh zur Vervollständigung einer teilweise beobachteten Matrix oder allgemeiner eines Tensors. Ich bin ein Neuling auf dem Gebiet, und für dieses Projekt muss ich schließlich unsere Methode mit anderen bekannten vergleichen, die heutzutage vorgeschlagenen Methoden mit ihnen vergleichen, nämlich dem Stand …
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
In allen modernen Empfehlungssystemen, die ich gesehen habe und die auf einer Matrixfaktorisierung beruhen, wird eine nicht negative Matrixfaktorisierung für die Benutzerfilmmatrix durchgeführt. Ich kann verstehen, warum Nicht-Negativität für die Interpretierbarkeit wichtig ist und / oder wenn Sie spärliche Faktoren wünschen. Aber wenn Sie sich nur für die Prognoseleistung interessieren, …
Lineare Gleichungssysteme sind in der Computerstatistik allgegenwärtig. Ein spezielles System, auf das ich gestoßen bin (z. B. in der Faktoranalyse), ist das System Ax=bAx=bAx=b wobei Hier ist eine Diagonalmatrix mit einer streng positiven Diagonale, ist eine (mit ) symmetrische positive semidefinitive Matrix und ist eine beliebige Matrix. Wir werden gebeten, …
Betrachten Sie das Problem der kollaborativen Filterung. Wir haben Matrix der Größe #users * #items. wenn Benutzer i Element j mag, wenn Benutzer i Element j nicht mag, undwenn es keine Daten über (i, j) Paar gibt. Wir wollen für zukünftige Benutzer-Artikel-Paare vorhersagen .MMMMi,j=1Mi,j=1M_{i,j} = 1Mi,j=0Mi,j=0M_{i,j} = 0Mi,j=?Mi,j=?M_{i,j}=?Mi,jMi,jM_{i,j} Der Standardansatz …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.