Als «matrix-decomposition» getaggte Fragen

Die Matrixzerlegung bezieht sich auf den Prozess der Faktorisierung einer Matrix in ein Produkt kleinerer Matrizen. Durch Zerlegen einer großen Matrix können viele Matrixalgorithmen effizient ausgeführt werden.

2
Berechnen Sie die ROC-Kurve für Daten
Ich habe also 16 Studien, in denen ich versuche, eine Person anhand eines biometrischen Merkmals mithilfe von Hamming Distance zu authentifizieren. Mein Schwellenwert ist auf 3,5 eingestellt. Meine Daten sind unten und nur Versuch 1 ist ein wahres Positiv: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 


2
Matrixfaktorisierungsmodell für Empfehlungssysteme Wie kann die Anzahl der latenten Merkmale bestimmt werden?
Ich versuche, eine Matrixfaktorisierungstechnik für ein einfaches Bewertungsempfehlungssystem für Benutzerelemente zu entwerfen. Ich habe 2 Fragen dazu. Zuerst in einer einfachen Implementierung, die ich von der Matrixfaktorisierungstechnik für die Filmempfehlung gesehen habe, hat der Autor gerade die Dimensionen der latenten Merkmale initialisiert. Nennen wir es K der beiden latenten Merkmalsbenutzer- …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.