Ich lese Steven Scotts Folien über das BSTS R-Paket (Sie finden sie hier: Folien ). Wenn er über die Einbeziehung vieler Regressoren in das strukturelle Zeitreihenmodell spricht, führt er irgendwann die Spitzen- und Plattenprioren von Regressionskoeffizienten ein und sagt, dass sie im Vergleich zu bestraften Methoden besser sind. Scott bezieht …
Ich führe sowohl mit Lasso als auch mit Ridge ein Regressionsmodell durch (um eine diskrete Ergebnisvariable im Bereich von 0 bis 5 vorherzusagen). Bevor ich das Modell ausführe, verwende ich die SelectKBestMethode scikit-learn, um den Funktionsumfang von 250 auf 25 zu reduzieren . Ohne eine anfängliche Merkmalsauswahl ergeben sowohl Lasso …
Ich habe bereits eine Vorstellung von den Vor- und Nachteilen der Gratregression und des LASSO. Für das LASSO ergibt der L1-Strafausdruck einen Vektor mit geringem Koeffizienten, der als Merkmalsauswahlmethode angesehen werden kann. Es gibt jedoch einige Einschränkungen für den LASSO. Wenn die Merkmale eine hohe Korrelation aufweisen, wählt der LASSO …
Ich lerne etwas über die Auswahl von Funktionen. Ich kann sehen, warum es für den Modellbau wichtig und nützlich wäre. Aber konzentrieren wir uns auf überwachte Lernaufgaben (Klassifizierungsaufgaben). Warum ist die Merkmalsauswahl für Klassifizierungsaufgaben wichtig? Ich sehe viel Literatur über die Auswahl von Funktionen und deren Verwendung für überwachtes Lernen, …
Hier frage ich, was andere üblicherweise tun, um den Chi-Quadrat-Test für die Merkmalsauswahl für das Ergebnis beim überwachten Lernen zu verwenden. Wenn ich das richtig verstehe, testen sie die Unabhängigkeit zwischen jedem Merkmal und dem Ergebnis und vergleichen die p-Werte zwischen den Tests für jedes Merkmal? In http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test , Der …
Geschlossen. Diese Frage ist nicht zum Thema . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so dass es beim Thema für Kreuz Validated. Geschlossen vor 2 Jahren . Welche Methoden / Implementierungen stehen in R / Python zur Verfügung, um unwichtige / wichtige …
Ein Beispiel für ein gutes Maß für die Klassentrennbarkeit bei Lernenden mit linearer Diskriminanz ist das lineare Diskriminanzverhältnis von Fisher. Gibt es andere nützliche Metriken, um festzustellen, ob Feature-Sets eine gute Klassentrennung zwischen Zielvariablen bieten? Insbesondere bin ich daran interessiert, gute multivariate Eingabeattribute zur Maximierung der Zielklassentrennung zu finden, und …
Was ist der beste Weg, um Funktionen für die Erkennung von Anomalien automatisch auszuwählen? Ich behandle normalerweise Anomaly Detection als Algorithmus , wo die Merkmale von menschlichen Experten ausgewählt werden: was zählt , ist der Ausgangsbereich (wie in „abnormal Eingang - abnormal Ausgang“) , so auch mit vielen Funktionen , …
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
Ich versuche, das, was ich bisher in der bestraften multivariaten Analyse verstanden habe, mit hochdimensionalen Datensätzen zusammenzufassen, und ich habe immer noch Schwierigkeiten, eine korrekte Definition von Soft-Thresholding vs. Lasso- Bestrafung (oder Bestrafung) zu erhalten.L1L1L_1 Genauer gesagt habe ich die spärliche PLS-Regression verwendet, um die 2-Block-Datenstruktur einschließlich genomischer Daten ( …
Ich experimentiere mit schrittweiser Regression, um die Vielfalt meiner Herangehensweise an das Problem zu verbessern. Ich habe also 2 Fragen: Was sind die Vorteile einer schrittweisen Regression? Was sind ihre spezifischen Stärken? Was halten Sie vom hybriden Ansatz, bei dem Sie schrittweise Regression verwenden, um Features auszuwählen, und dann eine …
Ich mache ein maschinelles Lernprojekt mit WEKA. Es ist eine überwachte Klassifizierung und in meinen grundlegenden Experimenten habe ich ein sehr schlechtes Maß an Genauigkeit erreicht. Dann wollte ich eine Funktionsauswahl treffen, aber dann hörte ich von PCA. Bei der Merkmalsauswahl berücksichtigen wir eine Teilmenge von Attributen, die den größten …
In meiner maschinellen Lernen Klasse haben wir gelernt , wie ist LASSO Regression sehr gut Merkmalsauswahl durchführen, da es die Verwendung von macht Regularisierung.l1l1l_1 Meine Frage: Verwenden Benutzer das LASSO-Modell normalerweise nur zur Funktionsauswahl (und speichern diese Funktionen dann in einem anderen Modell für maschinelles Lernen) oder verwenden sie normalerweise …
Ich habe die logistische Regression verwendet. Ich habe sechs Funktionen. Ich möchte die wichtigen Funktionen in diesem Klassifikator kennen, die das Ergebnis stärker beeinflussen als andere Funktionen. Ich habe Information Gain verwendet, aber es scheint, dass es nicht vom verwendeten Klassifikator abhängt. Gibt es eine Methode, um die Features nach …
Kontext: Ich entwickle ein System, das klinische Daten analysiert, um unplausible Daten herauszufiltern, bei denen es sich möglicherweise um Tippfehler handelt. Was ich bisher gemacht habe: Um die Plausibilität zu quantifizieren, habe ich bisher versucht, die Daten zu normalisieren und dann einen Plausibilitätswert für Punkt p basierend auf seiner Entfernung …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.