Es gibt verschiedene gängige Resampling-Techniken, die in der Praxis häufig verwendet werden, z. B. Bootstrapping, Permutationstest, Jackknife usw. In zahlreichen Artikeln und Büchern werden diese Techniken erläutert, z. B. Philip I Good (2010) Permutation, Parametric und Bootstrap Tests von Hypothesen Meine Frage ist, welche Resampling-Technik hat an Popularität gewonnen und …
Diese Frage mag zu offen sein, um eine endgültige Antwort zu erhalten, aber hoffentlich nicht. Algorithmen für maschinelles Lernen, wie SVM, GBM, Random Forest usw., haben im Allgemeinen einige freie Parameter, die über eine Faustregel hinaus auf jeden Datensatz abgestimmt werden müssen. Dies wird im Allgemeinen mit einer Art Neuabtastungstechnik …
In einigen Quellen, einschließlich dieser , habe ich gelesen , dass Random Forests unempfindlich gegenüber Ausreißern sind (wie es beispielsweise bei Logistic Regression und anderen ML-Methoden der Fall ist). Zwei Teile der Intuition sagen mir jedoch etwas anderes: Bei jeder Erstellung eines Entscheidungsbaums müssen alle Punkte klassifiziert werden. Dies bedeutet, …
Ich weiß, dass dies ein ziemlich heißes Thema ist, auf das niemand wirklich eine einfache Antwort geben kann. Trotzdem frage ich mich, ob der folgende Ansatz nicht sinnvoll sein könnte. Die Bootstrap-Methode ist nur dann nützlich, wenn Ihr Beispiel mehr oder weniger der gleichen Verteilung wie die ursprüngliche Grundgesamtheit entspricht …
Ich habe kürzlich gelernt, Bootstrapping-Techniken zu verwenden, um Standardfehler und Konfidenzintervalle für Schätzer zu berechnen. Was ich gelernt habe war, dass wenn die Daten IID sind, Sie die Probendaten als Grundgesamtheit behandeln und eine Stichprobenerhebung mit Ersatz durchführen können. Auf diese Weise können Sie mehrere Simulationen einer Teststatistik erhalten. Bei …
In den MIT OpenCourseWare-Hinweisen für 18.05 Introduction to Probability and Statistics, Spring 2014 (derzeit hier verfügbar ) heißt es: Die Bootstrap-Perzentil-Methode überzeugt durch ihre Einfachheit. Dies hängt jedoch von der Bootstrap-Verteilung von ab, wobei eine bestimmte Stichprobe eine gute Annäherung an die tatsächliche Verteilung von . Rice sagt über die …
Es wird oft behauptet, dass Bootstrapping eine Schätzung der Abweichung in einem Schätzer liefern kann. Wenn die Schätzung für eine Statistik ist und die Bootstrap-Repliken sind (mit ), dann ist die Bootstrap-Schätzung der Verzerrung was extrem einfach und mächtig erscheint, bis es beunruhigend ist. ~ t ii∈{1,⋯,N}biast≈1t^t^\hat tt~it~i\tilde t_ii∈{1,⋯,N}i∈{1,⋯,N}i\in\{1,\cdots,N\}biast≈1N∑it~i−t^biast≈1N∑it~i−t^\begin{equation} \mathrm{bias}_t …
Stark verzerrte Verteilungen wie die Protokollnormale führen nicht zu genauen Bootstrap-Konfidenzintervallen. Hier ist ein Beispiel, das zeigt, dass der linke und der rechte Heckbereich weit vom idealen Wert von 0,025 entfernt sind, unabhängig davon, welche Bootstrap-Methode Sie in R versuchen: require(boot) n <- 25 B <- 1000 nsim <- 1000 …
Ich habe ein Manuskript über eine Bootstrap-Methode zum Testen von Hypothesen von einem Mittelwert, und ich möchte es zur Veröffentlichung senden, aber ich habe ein moralisches Dilemma. Ich habe mich dem Protest gegen Elsevier wegen ihrer unethischen Geschäftspraktiken angeschlossen, und das Nachlesen des gesamten Themas hat mich wirklich dazu veranlasst, …
Nachdem ich kürzlich Bootstrap studiert hatte, stellte ich mir eine konzeptionelle Frage, die mich immer noch verwirrt: Sie haben eine Population und möchten ein Populationsattribut kennen, dh , wobei ich P verwende, um die Population darzustellen. Dies θ könnte beispielsweise ein Populationsmittelwert sein. Normalerweise können Sie nicht alle Daten aus …
Wenn ein Parameter gebootet wird, um den Standardfehler zu erhalten, erhalten wir eine Verteilung des Parameters. Warum verwenden wir nicht den Mittelwert dieser Verteilung als Ergebnis oder Schätzung für den Parameter, den wir erhalten möchten? Sollte sich die Verteilung nicht der tatsächlichen annähern? Daher würden wir eine gute Schätzung des …
Ich wollte eine Klassendemonstration durchführen, bei der ich ein t-Intervall mit einem Bootstrap-Intervall vergleiche und die Überdeckungswahrscheinlichkeit für beide berechne. Ich wollte, dass die Daten aus einer verzerrten Verteilung stammen, also habe ich mich dafür entschieden, die Daten als exp(rnorm(10, 0, 2)) + 1eine Stichprobe der Größe 10 aus einem …
Gibt es eine Bootstrap-Technik, mit der Vorhersageintervalle für Punktvorhersagen berechnet werden können, die z. B. aus einer linearen Regression oder einer anderen Regressionsmethode (k-nächster Nachbar, Regressionsbäume usw.) stammen? Irgendwie habe ich das Gefühl, dass die manchmal vorgeschlagene Methode, die Punktvorhersage nur zu booten (siehe z. B. Vorhersageintervalle für die kNN-Regression …
Ich benutze das "boot" -Paket, um einen ungefähren 2-seitigen Bootstrap-P-Wert zu berechnen, aber das Ergebnis ist zu weit vom P-Wert entfernt, als dass man t.test verwenden könnte. Ich kann nicht herausfinden, was ich in meinem R-Code falsch gemacht habe. Kann mir bitte jemand einen Hinweis dazu geben time = c(14,18,11,13,18,17,21,9,16,17,14,15, …
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.