Als «log-likelihood» getaggte Fragen

7
Warum die maximale Log-Wahrscheinlichkeit anstelle der Wahrscheinlichkeit optimieren?
In den meisten maschinellen Lernaufgaben, in denen Sie eine Wahrscheinlichkeit formulieren können, die maximiert werden sollte, würden wir tatsächlich die log-Wahrscheinlichkeit anstelle der Wahrscheinlichkeit für einige Parameter optimieren . ZB beim Maximum-Likelihood-Training ist es normalerweise die Log-Likelihood. Wenn Sie dies mit einer Gradientenmethode tun, beinhaltet dies einen Faktor:ppplogplog⁡p\log pθθ\theta ∂logp∂θ=1p⋅∂p∂θ∂log⁡p∂θ=1p⋅∂p∂θ …

5
Wie berechnet man Pseudo-
Christopher Mannings Artikel über die logistische Regression in R zeigt eine logistische Regression in R wie folgt: ced.logr <- glm(ced.del ~ cat + follows + factor(class), family=binomial) Einige Ausgaben: > summary(ced.logr) Call: glm(formula = ced.del ~ cat + follows + factor(class), family = binomial("logit")) Deviance Residuals: Min 1Q Median 3Q …

4
Theoretische Motivation für die Verwendung von Log-Likelihood vs. Likelihood
Ich versuche, die Allgegenwart der log-Wahrscheinlichkeit (und vielleicht allgemeiner log-Wahrscheinlichkeit) in der Statistik und in der Wahrscheinlichkeitstheorie auf einer tieferen Ebene zu verstehen. Log-Wahrscheinlichkeiten tauchen überall auf: Wir arbeiten normalerweise mit der Log-Wahrscheinlichkeit für die Analyse (z. B. zur Maximierung), die Fisher-Information wird als zweite Ableitung der Log-Wahrscheinlichkeit definiert, Entropie …

3
Ist in einem GLM die Log-Wahrscheinlichkeit des gesättigten Modells immer Null?
Als Teil der Ausgabe eines verallgemeinerten linearen Modells werden die Null- und Restabweichung verwendet, um das Modell zu bewerten. Die Formeln für diese Größen werden häufig als Log-Wahrscheinlichkeit des gesättigten Modells ausgedrückt. Beispiel: /stats//a/113022/22199 , Logistic Regression: So erhalten Sie ein gesättigtes Modell Das gesättigte Modell ist, soweit ich es …

1
R / mgcv: Warum produzieren te () und ti () Tensorprodukte unterschiedliche Oberflächen?
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.