Als «convergence» getaggte Fragen

Konvergenz bedeutet im Allgemeinen, dass sich eine Sequenz einer bestimmten Probenmenge einer Konstanten nähert, wenn die Probengröße gegen unendlich tendiert. Konvergenz ist auch eine Eigenschaft eines iterativen Algorithmus zur Stabilisierung eines bestimmten Zielwerts.

1
Ableiten des K-Mittelwert-Algorithmus als Grenze der Erwartungsmaximierung für Gaußsche Gemische
Christopher Bishop definiert den erwarteten Wert der Likelihood-Funktion für das vollständige Datenprotokoll (dh unter der Annahme, dass wir sowohl die beobachtbaren Daten X als auch die latenten Daten Z erhalten) wie folgt: EZ[lnp(X,Z∣μ,Σ,π)]=∑n=1N∑k=1Kγ(znk){lnπk+lnN(xn∣ μk,Σk)}(1)(1)EZ[ln⁡p(X,Z∣μ,Σ,π)]=∑n=1N∑k=1Kγ(znk){ln⁡πk+ln⁡N(xn∣ μk,Σk)} \mathbb{E}_\textbf{Z}[\ln p(\textbf{X},\textbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^N \sum_{k=1}^K \gamma(z_{nk})\{\ln \pi_k + \ln \mathcal{N}(\textbf{x}_n \mid …

2
Warum würde ein statistisches Modell bei einem riesigen Datensatz überanpassen?
Für mein aktuelles Projekt muss ich möglicherweise ein Modell erstellen, um das Verhalten einer bestimmten Personengruppe vorherzusagen. Der Trainingsdatensatz enthält nur 6 Variablen (ID dient nur zu Identifikationszwecken): id, age, income, gender, job category, monthly spend in dem monthly spendist die Antwortvariable. Der Trainingsdatensatz enthält jedoch ungefähr 3 Millionen Zeilen, …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 




2
Der ökonometrische Text behauptet, dass Konvergenz in der Verteilung Konvergenz in Momenten impliziert
Das folgende Lemma findet sich in Hayashis Ökonometrie : Lemma 2.1 (Konvergenz in Verteilung und in Momenten): Sei der te Moment von und wobei \ alpha_ {s} endlich ist (dh eine reelle Zahl). Dann:αsnαsn\alpha_{sn}sssznznz_{n}limn→∞αsn=αslimn→∞αsn=αs\lim_{n\to\infty}\alpha_{sn}=\alpha_{s}αsαs\alpha_{s} " zn→dzzn→dzz_{n} \to_{d} z " ⟹⟹\implies " αsαs\alpha_{s} ist der sss te Moment von zzz ." …

2
Eine stetige Funktion einer Folge von Zufallsvektoren konvergiert mit der Wahrscheinlichkeit gegen die Funktion der Grenze
Satz: Wenn eine Folge von k-dimensionalen Zufallsvektoren st und wenn eine kontinuierliche Abbildung ist, dann ist .{Xn}{Xn}\{ X_n \}Xn→pXXn→pXX_n \overset{p}{\to} Xg:Rk→Rmg:Rk→Rmg: R^k \rightarrow R^mg(Xn)→pg(X)g(Xn)→pg(X)g(X_n) \overset{p}{\to} g(X) Beweis: Sei eine positive reelle Zahl. Dann geben wir ein wir haben KKKϵ>0ϵ>0\epsilon > 0 Ich verstehe nicht, warum einheitlich stetig ist und könnte …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.