"Klassifikations- und Regressionsbäume". CART ist eine beliebte maschinelle Lerntechnik und bildet die Grundlage für Techniken wie zufällige Wälder und gängige Implementierungen von Maschinen zur Erhöhung des Gradienten.
Ein zufälliger Wald ist eine Sammlung von Entscheidungsbäumen, die dem Absackkonzept folgen. Wenn wir von einem Entscheidungsbaum zum nächsten übergehen, wie werden dann die Informationen, die der letzte Entscheidungsbaum gelernt hat, zum nächsten weitergeleitet? Denn meines Wissens gibt es nichts Vergleichbares wie ein trainiertes Modell, das für jeden Entscheidungsbaum erstellt …
Ich habe viele Artikel gefunden, die besagen, dass Boosting-Methoden empfindlich gegenüber Ausreißern sind, aber keinen Artikel, der erklärt, warum. Meiner Erfahrung nach sind Ausreißer für jeden Algorithmus für maschinelles Lernen schlecht, aber warum werden Boosting-Methoden als besonders empfindlich eingestuft? Wie würden die folgenden Algorithmen in Bezug auf die Empfindlichkeit gegenüber …
Was ist eine bessere Kostenfunktion für einen zufälligen Waldbaum: Gini-Index oder Entropie? Ich versuche, zufällige Gesamtstruktur in Clojure zu implementieren.
Ich bin gespannt auf die praktische Umsetzung einer binären Aufteilung in einem Entscheidungsbaum - bezogen auf Ebenen eines kategorialen Prädiktors .XjXjX{j} Insbesondere verwende ich beim Erstellen eines Vorhersagemodells unter Verwendung eines Entscheidungsbaums oft ein Stichprobenverfahren (z. B. Absacken, Überstichproben usw.), um die Genauigkeit und Stabilität der Vorhersage zu verbessern. Während …
Ich denke, dies ist eine einfache Frage, obwohl die Gründe dafür, warum oder warum nicht, möglicherweise nicht zutreffen. Der Grund, den ich frage, ist, dass ich kürzlich meine eigene Implementierung eines RF geschrieben habe und obwohl es gut funktioniert, funktioniert es nicht ganz so gut, wie ich es erwartet hatte …
Kann der vorhergesagte Wert bei Entscheidungsbäumen außerhalb des Bereichs der Trainingsdaten liegen? Wenn der Trainingsdatensatzbereich der Zielvariablen beispielsweise 0-100 beträgt, können meine Werte beim Generieren und Anwenden meines Modells auf etwas anderes -5 sein? oder 150? Da ich die Regression von Entscheidungsbäumen so verstehe, dass sie immer noch auf Regeln …
Kann mir bitte jemand erklären, wann Gini-Verunreinigung und Informationsgewinn für Entscheidungsbäume verwendet werden sollen? Können Sie mir Situationen / Beispiele geben, wann welche am besten zu verwenden ist?
In dieser Frage - Gibt es eine Methode zum Erstellen von Entscheidungsbäumen, die strukturierte / hierarchische / mehrstufige Prädiktoren berücksichtigt? - Sie erwähnen eine Paneldatenmethode für Bäume. Gibt es spezielle Paneldatenmethoden zur Unterstützung von Vektormaschinen und neuronalen Netzen? Wenn ja, können Sie einige Artikel zu den Algorithmen und (falls verfügbar) …
Ich bin etwas neu im Data Mining und arbeite an einem Klassifizierungsmodell für die Vorhersage von Filmbewertungen. Ich habe Datensätze aus der IMDB gesammelt und plane, für mein Modell Entscheidungsbäume und Ansätze für den nächsten Nachbarn zu verwenden. Ich möchte wissen, welches frei verfügbare Data Mining-Tool die von mir benötigte …
Eine zufällige Gesamtstruktur ist eine Sammlung von Entscheidungsbäumen, die gebildet werden, indem nur bestimmte Merkmale zufällig ausgewählt werden, mit denen jeder Baum erstellt werden soll (und manchmal die Trainingsdaten eingesackt werden). Anscheinend lernen und verallgemeinern sie gut. Hat jemand eine MCMC-Stichprobe des Entscheidungsbaumraums erstellt oder diese mit zufälligen Wäldern verglichen? …
Gibt es eine Möglichkeit, nach Erstellung eines komplexen Klassifizierungsbaums mit rpart (in R) die für jede Klasse erstellten Entscheidungsregeln zu organisieren? Anstatt also einen riesigen Baum zu bekommen, bekommen wir eine Reihe von Regeln für jede der Klassen? (Wenn das so ist, wie?) Hier ist ein einfaches Codebeispiel, um Beispiele …
Ich arbeite mit einigen großen Datenmengen unter Verwendung des gbm-Pakets in R. Sowohl meine Prädiktormatrix als auch mein Antwortvektor sind ziemlich spärlich (dh die meisten Einträge sind Null). Ich hatte gehofft, Entscheidungsbäume mit einem Algorithmus zu erstellen, der diese Spärlichkeit ausnutzt, wie hier ). In diesem Artikel haben, wie in …
Wenn wir einen ausgewachsenen Entscheidungsbaum (dh einen nicht beschnittenen Entscheidungsbaum) betrachten, weist er eine hohe Varianz und eine geringe Verzerrung auf. Bagging und Random Forests verwenden diese Modelle mit hoher Varianz und aggregieren sie, um die Varianz zu verringern und damit die Vorhersagegenauigkeit zu verbessern. Sowohl Bagging als auch Random …
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
Ich möchte Adaboost mit Decision Stump implementieren. Ist es richtig, in jeder Iteration von Adaboost so viele Entscheidungsstümpfe wie die Funktionen unseres Datensatzes zu treffen? Wenn ich beispielsweise einen Datensatz mit 24 Funktionen habe, sollte ich in jeder Iteration 24 Entscheidungsstumpfklassifizierer haben? Oder sollte ich zufällig einige Funktionen auswählen und …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.