Als «rbm» getaggte Fragen

Eingeschränkte Boltzman-Maschine


8
R Bibliotheken für tiefes Lernen
Ich habe mich gefragt, ob es da draußen gute R-Bibliotheken für tieflernende neuronale Netze gibt. Ich weiß, dass es die nnet, neuralnetund gibt RSNNS, aber keine davon scheint Deep-Learning-Methoden zu implementieren. Ich interessiere mich besonders für unbeaufsichtigtes, gefolgt von beaufsichtigtem Lernen und für die Verwendung von Abbrüchen, um eine Co-Anpassung …


2
Autoencoder können keine sinnvollen Funktionen lernen
Ich habe 50.000 Bilder wie diese beiden: Sie zeigen Diagramme von Daten. Ich wollte Funktionen aus diesen Bildern extrahieren, also verwendete ich den von Theano (deeplearning.net) bereitgestellten Autoencoder-Code. Das Problem ist, dass diese Autoencoder anscheinend keine Funktionen kennen. Ich habe RBM ausprobiert und es ist das gleiche. MNIST-Dataset bietet nette …

2
Eingeschränkte Boltzmann-Maschine: Wie wird sie beim maschinellen Lernen eingesetzt?
Hintergrund: Ja, die eingeschränkte Boltzmann-Maschine (RBM) kann verwendet werden, um die Gewichte eines neuronalen Netzwerks zu initiieren. Außerdem KANN es "Schicht für Schicht" verwendet werden, um ein tiefes Glaubensnetzwerk aufzubauen (d. H. Eine te Schicht auf der ( n - 1 ) -ten Schicht zu trainieren und dann die zu …

2
Deep Learning vs. Entscheidungsbäume und Methoden fördern
Ich suche nach Artikeln oder Texten, die vergleichen und diskutieren (entweder empirisch oder theoretisch): Boosting- und Entscheidungsbaum- Algorithmen wie Random Forests oder AdaBoost und GentleBoost werden auf Entscheidungsbäume angewendet. mit Deep Learning Methoden wie Restricted Boltzmann Machines , Hierarchical Temporal Memory , Convolutional Neural Networks , etc. Kennt jemand einen …



2
Sind grafische Modelle und Boltzmann-Maschinen mathematisch miteinander verbunden?
Während ich im Physikunterricht tatsächlich einige Programmierungen mit Boltzmann-Maschinen durchgeführt habe, bin ich mit deren theoretischer Charakterisierung nicht vertraut. Im Gegensatz dazu kenne ich eine bescheidene Menge über die Theorie der grafischen Modelle (über die ersten Kapitel von Lauritzens Buch Graphical Models ). Frage: Gibt es eine sinnvolle Beziehung zwischen …

2
Was ist Pretraining und wie trainiert man ein neuronales Netzwerk?
Ich verstehe, dass Pretraining verwendet wird, um einige Probleme beim konventionellen Training zu vermeiden. Wenn ich Backpropagation mit beispielsweise einem Autoencoder verwende, weiß ich, dass ich auf Zeitprobleme stoßen werde, weil die Backpropagation langsam ist und ich auch in lokalen Optima stecken bleiben und bestimmte Funktionen nicht lernen kann. Was …

4
Gutes Tutorial für eingeschränkte Boltzmann-Maschinen (RBM)
Ich studiere die Restricted Boltzmann Machine (RBM) und habe einige Probleme beim Verständnis der Log-Likelihood-Berechnungen in Bezug auf die Parameter des RBM. Obwohl viele Forschungsarbeiten zu RBM veröffentlicht wurden, gibt es keine detaillierten Schritte der Derivate. Nachdem ich online gesucht hatte, konnte ich sie in diesem Dokument finden: Fischer, A. …
10 references  rbm 


2
Anhaltende kontrastive Divergenz für RBMs
Wenn wir den persistenten CD-Lernalgorithmus für eingeschränkte Bolzmann-Maschinen verwenden, starten wir unsere Gibbs-Abtastkette in der ersten Iteration an einem Datenpunkt, aber im Gegensatz zur normalen CD beginnen wir in den folgenden Iterationen nicht über unserer Kette. Stattdessen beginnen wir dort, wo die Gibbs-Abtastkette in der vorherigen Iteration endete. Beim normalen …


3
Finden Sie die Verteilung und transformieren Sie sie in die Normalverteilung
Ich habe Daten, die beschreiben, wie oft ein Ereignis während einer Stunde stattfindet ("Anzahl pro Stunde", nph) und wie lange die Ereignisse dauern ("Dauer in Sekunden pro Stunde", dph). Dies sind die Originaldaten: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.