Als «interpretation» getaggte Fragen

Bezieht sich allgemein auf inhaltliche Schlussfolgerungen aus den Ergebnissen einer statistischen Analyse.


4
Wie werden Koeffizienten aus einer Polynommodellanpassung interpretiert?
Ich versuche, ein Polynom zweiter Ordnung zu erstellen, das zu einigen meiner Daten passt. Angenommen, ich zeichne diese Übereinstimmung mit ggplot(): ggplot(data, aes(foo, bar)) + geom_point() + geom_smooth(method="lm", formula=y~poly(x, 2)) Ich bekomme: Eine Passung zweiter Ordnung funktioniert also ganz gut. Ich berechne es mit R: summary(lm(data$bar ~ poly(data$foo, 2))) Und …


1
Was ist der intuitive Grund für das Ausführen von Rotationen in Factor Analysis / PCA und wie wählt man eine geeignete Rotation aus?
Meine Fragen Was ist der intuitive Grund für die Rotation von Faktoren in der Faktorenanalyse (oder von Komponenten in der PCA)? Mein Verständnis ist, dass es offensichtlich schwierig ist, die Komponenten zu unterscheiden, wenn Variablen in den obersten Komponenten (oder Faktoren) fast gleich geladen sind. In diesem Fall könnte man …

2
P-Wert verstehen
Ich weiß, dass es viele Materialien gibt, die den p-Wert erklären. Das Konzept ist jedoch ohne weitere Klarstellung nicht leicht festzuhalten. Hier ist die Definition von p-Wert aus Wikipedia: Der p-Wert ist die Wahrscheinlichkeit, eine Teststatistik zu erhalten, die mindestens so extrem ist wie die tatsächlich beobachtete, unter der Annahme, …


5
Daten "Erkundung" vs. Daten "Schnüffeln" / "Foltern"?
Oft bin ich auf informelle Warnungen vor "Datenschnüffeln" gestoßen (hier ist ein amüsantes Beispiel ), und ich glaube, ich habe eine intuitive Vorstellung davon, was das ungefähr bedeutet und warum es ein Problem sein könnte. Andererseits scheint die "explorative Datenanalyse" ein absolut seriöses Verfahren in der Statistik zu sein, zumindest …

6
Wann sind Konfidenzintervalle sinnvoll?
Wenn ich richtig verstehe, ist ein Konfidenzintervall eines Parameters ein Intervall, das mit einer Methode erstellt wurde, die Intervalle liefert, die den wahren Wert für einen bestimmten Anteil von Stichproben enthalten. Das "Vertrauen" bezieht sich also eher auf die Methode als auf das Intervall, das ich aus einer bestimmten Stichprobe …


3
Interpretation einfacher Vorhersagen zu Odds Ratios in der logistischen Regression
Ich bin etwas neu in der Verwendung der logistischen Regression und ein bisschen verwirrt von einer Diskrepanz zwischen meinen Interpretationen der folgenden Werte, die ich für gleich gehalten hätte: potenzierte Beta-Werte vorhergesagte Wahrscheinlichkeit des Ergebnisses anhand von Beta-Werten. Hier ist eine vereinfachte Version des von mir verwendeten Modells, bei dem …


4
Wie interpretieren Sie RMSLE (Root Mean Squared Logarithmic Error)?
Ich habe einen maschinellen Lernwettbewerb durchgeführt, bei dem RMSLE (Root Mean Squared Logarithmic Error) verwendet wird, um die Leistung zu bewerten und den Verkaufspreis einer Gerätekategorie vorherzusagen. Das Problem ist, dass ich nicht sicher bin, wie ich den Erfolg meines Endergebnisses interpretieren soll. Wenn ich zum Beispiel einen Effektivwert von …


1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

3
Kann man nicht sagen, dass Deep-Learning-Modelle jetzt interpretierbar sind? Sind Nodes Features?
Für statistische und maschinelle Lernmodelle gibt es mehrere Interpretierbarkeitsebenen: 1) den Algorithmus als Ganzes, 2) Teile des Algorithmus im Allgemeinen, 3) Teile des Algorithmus für bestimmte Eingaben, und diese drei Ebenen sind in jeweils zwei Teile unterteilt. eine für das Training und eine für die Funktionsbewertung. Die letzten beiden Teile …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.