Als «bic» getaggte Fragen

BIC ist eine Abkürzung für Bayesian Information Criterion. BIC ist eine Methode zum Modellvergleich. Siehe auch AIC



5
AIC-Richtlinien bei der Modellauswahl
Ich benutze normalerweise BIC, da ich verstehe, dass es Parsimonie stärker schätzt als AIC. Ich habe mich jetzt jedoch für einen umfassenderen Ansatz entschieden und möchte auch AIC verwenden. Ich weiß, dass Raftery (1995) gute Richtlinien für BIC-Unterschiede vorgelegt hat: 0-2 ist schwach, 2-4 ist ein positiver Beweis dafür, dass …


5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
AIC & BIC Nummerninterpretation
Ich suche Beispiele für die Interpretation von AIC-Schätzungen (Akaike-Informationskriterium) und BIC-Schätzungen (Bayes-Informationskriterium). Kann ein negativer Unterschied zwischen BICs als hintere Gewinnchance eines Modells gegenüber dem anderen interpretiert werden? Wie kann ich das in Worte fassen? Zum Beispiel kann der BIC = -2 bedeuten, dass die Chancen des besseren Modells gegenüber …


1
Versucht BIC, ein echtes Modell zu finden?
Diese Frage ist ein Follow-up oder ein Versuch, mögliche Verwirrung in Bezug auf ein Thema zu beseitigen, das ich und viele andere aufgrund des Unterschieds zwischen AIC und BIC als etwas schwierig empfinde. In einer sehr netten Antwort von @ Dave Kellen zu diesem Thema ( /stats//a/767/30589 ) lesen wir: …



1
Welche Mehrfachvergleichsmethode kann für ein älteres Modell verwendet werden: lsmeans oder glht?
Ich analysiere einen Datensatz unter Verwendung eines gemischten Effektmodells mit einem festen Effekt (Bedingung) und zwei zufälligen Effekten (Teilnehmer aufgrund des innerhalb des Motivs und des Paares). Das Modell wurde mit dem erzeugten lme4Paket: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Als nächstes führte ich einen Likelihood-Ratio-Test dieses Modells gegen das Modell ohne festen Effekt (Bedingung) …

2
AIC, BIC und GCV: Was ist am besten geeignet, um bei bestraften Regressionsmethoden eine Entscheidung zu treffen?
Mein allgemeines Verständnis ist, dass sich AIC mit dem Kompromiss zwischen der Anpassungsgüte des Modells und der Komplexität des Modells befasst. AIC=2k−2ln(L)AIC=2k−2ln(L)AIC =2k -2ln(L) kkk = Anzahl der Parameter im Modell LLL = Wahrscheinlichkeit Das Bayes'sche Informationskriterium BIC ist eng mit dem AIC verwandt. Der AIC benachteiligt die Anzahl der …


2
Verwenden von BIC zum Schätzen der Anzahl von k in KMEANS
Ich versuche derzeit, den BIC für meinen Spielzeugdatensatz (ofc iris (:)) zu berechnen. Ich möchte die hier gezeigten Ergebnisse reproduzieren (Abb. 5). Dieses Papier ist auch meine Quelle für die BIC-Formeln. Ich habe 2 Probleme damit: Notation: nichnichn_i = Anzahl der Elemente in Clusterichichi CichCichC_i = Mittelkoordinaten des Clustersichichi xjxjx_j …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.