Als «nonlinear-programming» getaggte Fragen

17
Gibt es einen hochwertigen nichtlinearen Programmierlöser für Python?
Ich habe mehrere herausfordernde nicht konvexe globale Optimierungsprobleme zu lösen. Derzeit verwende ich die Optimization Toolbox von MATLAB (speziell fmincon()mit algorithm = 'sqp'), was sehr effektiv ist . Der größte Teil meines Codes ist jedoch in Python, und ich würde die Optimierung gerne auch in Python durchführen. Gibt es einen …

8
Softwarepaket für eingeschränkte Optimierung?
Ich versuche, ein Problem der eingeschränkten Optimierung zu lösen, bei dem ich die Grenzen einiger Variablen kenne (insbesondere eine umrahmte Einschränkung). argminuf(u,x)arg⁡minuf(u,x) \arg \min_u f(u,x) unterliegen a ≤ d ( u , x ) ≤ bc(u,x)=0c(u,x)=0 c(u,x) = 0 a≤d(u,x)≤ba≤d(u,x)≤b a \le d(u,x) \le b wobei uuu ein Vektor von …

1
Intuitive Motivation für das BFGS-Update
Ich unterrichte eine Umfrageklasse zur numerischen Analyse und suche nach Motivation für die BFGS-Methode für Studenten mit begrenztem Hintergrund / Intuition in der Optimierung! Ich habe zwar keine Zeit, konsequent zu beweisen, dass alles konvergiert, aber ich möchte eine angemessene Motivation dafür geben, warum das BFGS-Hessian-Update erscheinen könnte. Als Analogie …

2
Zerlegungsmethoden zur Lösung großer Optimierungsprobleme
Ich habe mich gefragt, ob jemand Vorschläge für Texte oder Übersichtsartikel zu Zerlegungsmethoden (z. B. Primäre, Duale, Dantzig-Wolfe-Zerlegungen) zur Lösung großer mathematischer Programmierprobleme hat. Ich mochte Stephen Boyds "Notes on Decomposition Methods" , und es wäre großartig, zum Beispiel ein Lehrbuch zu finden, das dieses Thema ausführlicher behandelt.


2
C ++ - Bibliothek zur nichtlinearen eingeschränkten Minimierung
Ich versuche derzeit, das nichtlineare Problem der eingeschränkten Minimierung zu lösen, wie es in der matlab-Funktion "fmincon" implementiert ist. Meine Erwartungen sind: Minimieren (fun1, x0, uB, lB, fun2), wobei x0 der Anfangszustand ist, fun1 eine Funktion ist, die minimiert werden muss, uB obere Grenzen sind, lB untere Grenzen sind und …


3
Was ist zu groß für standardmäßige lineare Algebra / Optimierungsmethoden?
Verschiedene numerische lineare Algebra- und numerische Optimierungsmethoden haben unterschiedliche Größenbereiche, in denen sie zusätzlich zu ihren eigenen Eigenschaften eine „gute Idee“ sind. Beispielsweise werden für sehr große Optimierungsprobleme Gradienten-, stochastische Gradienten- und Koordinatenabstiegsmethoden anstelle von Newton- oder Interior Point-Methoden verwendet, da Sie sich nicht mit dem Hessischen befassen müssen. In …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.