In einem Datensatz von zwei nicht überlappenden Populationen (Patienten & Gesunde, insgesamt ) möchte ich (aus unabhängigen Variablen) signifikante Prädiktoren für eine kontinuierliche abhängige Variable finden. Korrelation zwischen Prädiktoren ist vorhanden. Ich bin daran interessiert herauszufinden, ob einer der Prädiktoren "in der Realität" mit der abhängigen Variablen zusammenhängt (anstatt die …
Angenommen, Sie erstellen ein lineares Modell, aber die Daten sind komplex.yyy y=xβ+ϵy=xβ+ϵ y = x \beta + \epsilon Mein Datensatz ist komplex, da alle Zahlen in die Form . Gibt es verfahrenstechnische Unterschiede bei der Arbeit mit solchen Daten?yyy(a+bi)(a+bi)(a + bi) Ich frage, weil Sie am Ende komplexe Kovarianzmatrizen und …
Vorstellen Sie führen eine lineare Regression mit vier numerischen Prädiktoren aus (IV1, ..., IV4). Wenn nur IV1 als Prädiktor enthalten ist, lautet die standardisierte Beta +.20 Wenn Sie auch IV2 bis IV4 einschließen, wird das Vorzeichen des standardisierten Regressionskoeffizienten von IV1 umgekehrt -.25(dh es wird negativ). Dies wirft einige Fragen …
Ich habe versucht, maschinelles Lernen mit dem Coursera-Material zu erlernen . In dieser Vorlesung verwendet Andrew Ng den Algorithmus der Gradientenabnahme, um die Koeffizienten des linearen Regressionsmodells zu ermitteln, mit denen die Fehlerfunktion (Kostenfunktion) minimiert wird. Benötigen wir für die lineare Regression einen Gradientenabstieg? Es scheint, dass ich die Fehlerfunktion …
Hinweis: Ich weiß, dass L1 die Eigenschaft zur Featureauswahl hat. Ich versuche zu verstehen, welche ich wählen soll, wenn die Funktionsauswahl völlig irrelevant ist. Wie kann man entscheiden, welche Regularisierung (L1 oder L2) verwendet werden soll? Was sind die Vor- und Nachteile jeder L1 / L2-Regularisierung? Wird empfohlen, zuerst die …
Ich arbeite mit einem großen Datensatz (vertraulich, daher kann ich nicht zu viel teilen) und bin zu dem Schluss gekommen, dass eine negative binomische Regression erforderlich wäre. Ich habe noch nie zuvor eine glm-Regression durchgeführt, und ich kann keine klaren Informationen über die Annahmen finden. Sind sie für MLR gleich? …
Ich werde durch Andrew Ng Vortrag Notizen auf Machine Learning. Die Notizen führen uns in die logistische Regression und dann in Perzeptron ein. Während der Beschreibung von Perceptron heißt es in den Anmerkungen, dass wir nur die Definition der Schwellenwertfunktion ändern, die für die logistische Regression verwendet wird. Danach können …
Unser kleines Team hatte eine Diskussion und blieb stecken. Weiß jemand, ob Cox-Regression eine zugrunde liegende Poisson-Verteilung hat. Wir hatten eine Debatte darüber, dass die Cox-Regression mit konstanter Risikodauer möglicherweise Ähnlichkeiten mit der Poisson-Regression mit einer robusten Varianz aufweist. Irgendwelche Ideen?
Im einfachen linearen Regressionsfall können Sie den Schätzer für kleinste Quadrate , sodass Sie nicht kennen müssen, um \ hat \ beta_1 zu schätzeny=β0+β1xy=β0+β1xy=\beta_0+\beta_1xβ^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2β^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2\hat\beta_1=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sum(x_i-\bar x)^2}β^0β^0\hat\beta_0β^1β^1\hat\beta_1 Angenommen, ich habe y=β1x1+β2x2y=β1x1+β2x2y=\beta_1x_1+\beta_2x_2 . Wie kann ich \ hat \ beta_1 ableiten, β^1β^1\hat\beta_1ohne \ hat \ beta_2 zu schätzen β^2β^2\hat\beta_2? oder geht …
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
Einerseits habe ich die Regression zum Mittelwert und andererseits habe ich den Trugschluss des Spielers . Der Irrtum von Gambler wird von Miller und Sanjurjo (2019) definiert als "die irrtümliche Annahme, dass zufällige Sequenzen eine systematische Tendenz zur Umkehrung aufweisen, dh dass Streifen mit ähnlichen Ergebnissen eher enden als andauern". …
Hintergrund Angenommen, wir haben ein gewöhnliches Modell der kleinsten Quadrate, in dem wir kkk Koeffizienten in unserem Regressionsmodell haben, y=Xβ+ϵy=Xβ+ϵ\mathbf{y}=\mathbf{X}\mathbf{\beta} + \mathbf{\epsilon} wobei ββ\mathbf{\beta} ein (k×1)(k×1)(k\times1) Koeffizientenvektor ist, ist XX\mathbf{X} die Entwurfsmatrix durch definierte X=⎛⎝⎜⎜⎜⎜⎜⎜11⋮1x11x21xn1x12…⋱………x1(k−1)⋮⋮xn(k−1)⎞⎠⎟⎟⎟⎟⎟⎟X=(1x11x12…x1(k−1)1x21…⋮⋮⋱⋮1xn1……xn(k−1))\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1\;(k-1)} \\ 1 & x_{21} …
Wie werden Standardfehler berechnet, wenn Sie einen angepassten Wert aus einem logistischen Regressionsmodell vorhersagen? Ich meine für die angepassten Werte , nicht für die Koeffizienten (die Fishers Informationsmatrix beinhaltet). Ich habe nur herausgefunden, wie ich die Zahlen erhalten kann R(z. B. hier in r-help oder hier in Stack Overflow), aber …
Ich bin etwas neu in der Verwendung der logistischen Regression und ein bisschen verwirrt von einer Diskrepanz zwischen meinen Interpretationen der folgenden Werte, die ich für gleich gehalten hätte: potenzierte Beta-Werte vorhergesagte Wahrscheinlichkeit des Ergebnisses anhand von Beta-Werten. Hier ist eine vereinfachte Version des von mir verwendeten Modells, bei dem …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.