Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
Ich nehme gerade am PGM-Kurs von Daphne Koller auf Coursera teil. Dabei modellieren wir im Allgemeinen ein Bayes'sches Netzwerk als Ursache-Wirkungs-Diagramm der Variablen, die Teil der beobachteten Daten sind. Aber bei PyMC-Tutorials und Beispielen sehe ich im Allgemeinen, dass es nicht ganz so modelliert ist wie das PGM oder zumindest …
Dies ist mein erster Versuch für jemanden aus dem Frequentistenlager, eine Bayes'sche Datenanalyse durchzuführen. Ich habe eine Reihe von Tutorials und einige Kapitel aus der Bayesian Data Analysis von A. Gelman gelesen. Als erstes mehr oder weniger unabhängiges Beispiel für die Datenanalyse habe ich die Wartezeiten für Züge ausgewählt. Ich …
Ich verwende PyMC3, um Bayes'sche Modelle für meine Daten auszuführen. Ich bin neu in der Bayes'schen Modellierung, aber laut einigen Blog-Posts , Wikipedia und QA von dieser Website scheint es ein gültiger Ansatz zu sein, den Bayes-Faktor und das BIC-Kriterium zu verwenden, um auswählen zu können, welches Modell meine Daten …
Auf ihrer Wiki-Seite geben die Entwickler von Stan Folgendes an: Einige Prinzipien, die wir nicht mögen: Invarianz, Jeffreys, Entropie Stattdessen sehe ich viele Normalverteilungsempfehlungen. Bisher habe ich Bayes'sche Methoden verwendet, die nicht auf Stichproben beruhten, und war froh zu verstehen, warum war eine gute Wahl für Binomialwahrscheinlichkeiten.θ∼Beta(α=12,β=12)θ∼Beta(α=12,β=12)\theta \sim \text{Beta}\left(\alpha=\frac{1}{2},\beta=\frac{1}{2}\right)
Ich versuche ein sehr einfaches Modell: Anpassen eines Normalen, bei dem ich davon ausgehe, dass ich die Präzision kenne und nur den Mittelwert ermitteln möchte. Der folgende Code scheint korrekt zum Normal zu passen. Aber nach dem Anpassen möchte ich aus dem Modell eine Stichprobe erstellen, dh neue Daten generieren, …
Das Problem Ich möchte die Modellparameter einer einfachen 2-Gaußschen Mischungspopulation anpassen. Angesichts des Hype um Bayes'sche Methoden möchte ich verstehen, ob die Bayes'sche Inferenz für dieses Problem ein besseres Werkzeug ist als herkömmliche Anpassungsmethoden. Bisher ist MCMC in diesem Spielzeugbeispiel sehr schlecht, aber vielleicht habe ich gerade etwas übersehen. Schauen …
Problemeinrichtung Eines der ersten Spielzeugprobleme, auf das ich PyMC anwenden wollte, ist das nichtparametrische Clustering: Modellieren Sie anhand einiger Daten diese als Gaußsche Mischung und lernen Sie die Anzahl der Cluster sowie den Mittelwert und die Kovarianz jedes Clusters. Das meiste, was ich über diese Methode weiß, stammt aus Videovorträgen …
Da ich ein Softwareentwickler bin, der versucht, mehr Statistiken zu lernen, müssen Sie mir vergeben, bevor ich überhaupt anfange. Dies ist ein ernstes Neuland ... Ich habe PyMC gelernt und einige wirklich (wirklich) einfache Beispiele durchgearbeitet . Ein Problem, bei dem ich nicht zur Arbeit kommen kann (und für das …
Ich lese gerade das "Buch" Probabilistic Programming and Bayesian Methods for Hackers . Ich habe ein paar Kapitel gelesen und über das erste Kapitel nachgedacht, in dem das erste Beispiel mit pymc darin besteht, einen Hexenpunkt in Textnachrichten zu erkennen. In diesem Beispiel wird die Zufallsvariable, die angibt, wann der …
Ich habe im Github-Repo nach Pymc gesucht und dieses Notizbuch gefunden: Variationsinferenz: Bayesianische Neuronale Netze Der Autor lobt die Vorzüge der bayesianischen / probabilistischen Programmierung, sagt dann aber weiter: Leider spielt die probabilistische Programmierung bei traditionellen ML-Problemen wie Klassifizierung oder (nichtlinearer) Regression häufig eine zweite Rolle (in Bezug auf Genauigkeit …
Als Teil der Reproduktion eines Modells, das ich teilweise in dieser Frage zum Stapelüberlauf beschrieben habe, möchte ich eine grafische Darstellung einer posterioren Verteilung erhalten. Das (räumliche) Modell beschreibt den Verkaufspreis einiger Immobilien als Bernoulli-Verteilung, je nachdem, ob die Immobilie teuer (1) oder billig (0) ist. In Gleichungen: p i …
Angenommen, ich habe eine große Stichprobe von Werten in [0,1][0,1][0,1] . Ich möchte die zugrunde liegende Beta(α,β)Beta(α,β)\text{Beta}(\alpha, \beta) -Verteilung schätzen . Der Großteil der Proben stammt aus dieser angenommenen Beta(α,β)Beta(α,β)\text{Beta}(\alpha, \beta) -Verteilung, während der Rest Ausreißer sind, die ich bei der Schätzung von αα\alpha und ignorieren möchte ββ\beta. Was ist …
Kevin Murphys Buch behandelt ein klassisches hierarchisches Bayes'sches Problem (ursprünglich diskutiert in Johnson and Albert, 1999, p24): Angenommen, wir versuchen, die Krebsrate in Städten zu schätzen . In jeder Stadt untersuchen wir eine Anzahl von Personen und messen die Anzahl der Personen mit Krebs , wobei die wahre Krebsrate in …
Warum hierarchisch? : Ich habe versucht, dieses Problem zu untersuchen, und soweit ich weiß, handelt es sich um ein "hierarchisches" Problem, da Sie Beobachtungen über Beobachtungen aus einer Population machen, anstatt direkte Beobachtungen aus dieser Population zu machen. Referenz: http://www.econ.umn.edu/~bajari/iosp07/rossi1.pdf Warum Bayesian? : Außerdem habe ich es als Bayesianisch markiert, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.