Markov-Kette Monte Carlo (MCMC) bezieht sich auf eine Klasse von Methoden zum Erzeugen von Proben aus einer Zielverteilung durch Erzeugen von Zufallszahlen aus einer Markov-Kette, deren stationäre Verteilung die Zielverteilung ist. MCMC-Methoden werden typischerweise verwendet, wenn direktere Methoden zur Zufallszahlengenerierung (z. B. Inversionsmethode) nicht durchführbar sind. Die erste MCMC-Methode war der Metropolis-Algorithmus, der später zum Metropolis-Hastings-Algorithmus modifiziert wurde.