Als «k-means» getaggte Fragen

k-means ist ein Verfahren zum Partitionieren von Daten in Cluster durch Finden einer bestimmten Anzahl von Mitteln k, st, wenn Daten Clustern mit dem nächsten Mittelwert zugewiesen werden, wird die w / i-Clustersumme der Quadrate minimiert

5
Wie man die Nachteile von K-means versteht
K-means ist eine weit verbreitete Methode in der Clusteranalyse. Nach meinem Verständnis erfordert diese Methode KEINE Annahmen, dh, Sie geben mir einen Datensatz und eine vorgegebene Anzahl von Clustern, k, und ich wende nur diesen Algorithmus an, der die Summe der Fehlerquadrate (SSE) im Quadrat des Clusters minimiert Error. K-means …


6
Wie können Sie feststellen, ob die Daten so „geclustert“ sind, dass Clustering-Algorithmen aussagekräftige Ergebnisse liefern?
Woher wissen Sie, ob Ihre (hochdimensionalen) Daten genügend Clustering aufweisen, sodass Ergebnisse von kmeans oder anderen Clustering-Algorithmen tatsächlich von Bedeutung sind? Wie stark sollte die Varianz innerhalb eines Clusters reduziert werden, damit die tatsächlichen Cluster-Ergebnisse aussagekräftig (und nicht unecht) sind? Sollte Clustering sichtbar sein, wenn eine dimensionsreduzierte Form der Daten …

6
Clustering auf der Ausgabe von t-SNE
Ich habe eine Anwendung, in der es nützlich wäre, ein verrauschtes Dataset zu gruppieren, bevor Sie nach Untergruppeneffekten in den Clustern suchen. Ich habe mir zuerst PCA angeschaut, aber es werden ca. 30 Komponenten benötigt, um 90% der Variabilität zu erreichen. Wenn Sie also auf nur ein paar PCs gruppieren, …

3
Wie kann eine hübsche grafische Darstellung der Ergebnisse der k-means Clusteranalyse erstellt werden?
Ich benutze R, um K-bedeutet Clustering zu machen. Ich verwende 14 Variablen, um K-means auszuführen Was ist ein hübscher Weg, um die Ergebnisse von K-means zu zeichnen? Gibt es bereits Implementierungen? Erschweren 14 Variablen das Zeichnen der Ergebnisse? Ich habe etwas namens GGcluster gefunden, das cool aussieht, sich aber noch …

6
Warum verwendet der k-means Clustering-Algorithmus nur die euklidische Distanzmetrik?
Gibt es einen bestimmten Zweck in Bezug auf Effizienz oder Funktionalität, warum der k-means-Algorithmus zum Beispiel keine Cosinus- (Dis-) Ähnlichkeit als Distanzmetrik verwendet, sondern nur die euklidische Norm verwenden kann? Wird die K-means-Methode im Allgemeinen eingehalten und korrekt sein, wenn andere Abstände als Euklidisch berücksichtigt oder verwendet werden? [Ergänzung von …

5
Welche Beziehung besteht zwischen k-means Clustering und PCA?
Es ist gängige Praxis, PCA (Principal Component Analysis) vor einem Clustering-Algorithmus (z. B. k-means) anzuwenden. Es wird angenommen, dass es die Clustering-Ergebnisse in der Praxis verbessert (Rauschunterdrückung). Ich bin jedoch an einer vergleichenden und eingehenden Untersuchung der Beziehung zwischen PCA und k-means interessiert. Zum Beispiel Chris Ding und Xiaofeng Sich, …

10
Wie bestimme ich die richtige Anzahl von Clustern?
Wir finden die Cluster-Zentren und weisen k verschiedenen Cluster-Klassen Punkte zu. Dies ist ein sehr bekannter Algorithmus, der fast in jedem maschinellen Lernpaket im Netz zu finden ist. Aber der fehlende und wichtigste Teil meiner Meinung nach ist die Wahl eines korrekten k. Was ist der beste Wert dafür? Und …



5
Ist es wichtig, Daten vor dem Clustering zu skalieren?
Ich habe dieses Tutorial gefunden , das vorschlägt, dass Sie die Skalierungsfunktion für Features vor dem Clustering ausführen sollten (ich glaube, dass sie Daten in Z-Scores konvertiert). Ich frage mich, ob das notwendig ist. Ich frage hauptsächlich, weil es einen schönen Ellbogenpunkt gibt, wenn ich die Daten nicht skaliere, aber …


1
Wie würde PCA bei einer k-means Clustering-Analyse helfen?
Hintergrund : Ich möchte die Wohngebiete einer Stadt anhand ihrer sozioökonomischen Merkmale in Gruppen einteilen, z. B. Dichte der Wohneinheiten, Bevölkerungsdichte, Grünfläche, Wohnungspreis, Anzahl der Schulen / Gesundheitszentren / Kindertagesstätten usw. Ich möchte verstehen, in wie viele verschiedene Gruppen die Wohngebiete unterteilt werden können und was ihre einzigartigen Merkmale sind. …

3
Bündelung einer langen Liste von Zeichenfolgen (Wörtern) in Ähnlichkeitsgruppen
Ich habe das folgende Problem zur Hand: Ich habe eine sehr lange Liste von Wörtern, möglicherweise Namen, Nachnamen usw. Ich muss diese Wortliste so gruppieren, dass ähnliche Wörter, zum Beispiel Wörter mit ähnlichem Bearbeitungsabstand (Levenshtein), in der Liste angezeigt werden gleichen Cluster. Zum Beispiel sollten "Algorithmus" und "Alogrithmus" hohe Chancen …

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.