Als «master-theorem» getaggte Fragen

2
Warum ist der leere Typ von C nicht analog zum leeren / unteren Typ?
Wikipedia und andere Quellen, die ich gefunden habe, listen den voidTyp C als Einheitentyp und nicht als leeren Typ auf. Ich finde das verwirrend, da es mir so scheint, als ob es voidbesser zur Definition eines Leer- / Bodentyps passt. voidSoweit ich das beurteilen kann, gibt es keine Werte . …
28 type-theory  c  logic  modal-logic  coq  equality  coinduction  artificial-intelligence  computer-architecture  compilers  asymptotics  formal-languages  asymptotics  landau-notation  asymptotics  turing-machines  optimization  decision-problem  rice-theorem  algorithms  arithmetic  floating-point  automata  finite-automata  data-structures  search-trees  balanced-search-trees  complexity-theory  asymptotics  amortized-analysis  complexity-theory  graphs  np-complete  reductions  np-hard  algorithms  string-metrics  computability  artificial-intelligence  halting-problem  turing-machines  computation-models  graph-theory  terminology  complexity-theory  decision-problem  polynomial-time  algorithms  algorithm-analysis  optimization  runtime-analysis  loops  turing-machines  computation-models  recurrence-relation  master-theorem  complexity-theory  asymptotics  parallel-computing  landau-notation  terminology  optimization  decision-problem  complexity-theory  polynomial-time  counting  coding-theory  permutations  encoding-scheme  error-correcting-codes  machine-learning  natural-language-processing  algorithms  graphs  social-networks  network-analysis  relational-algebra  constraint-satisfaction  polymorphisms  algorithms  graphs  trees 

1
Strenger Beweis für die Gültigkeit der Annahme
Der Hauptsatz ist ein schönes Werkzeug zum Lösen bestimmter Arten von Wiederholungen . Wir beschönigen jedoch häufig einen integralen Bestandteil, wenn wir ihn auftragen. Beispielsweise gehen wir bei der Analyse von Mergesort gerne ab T(n)=T(⌊n2⌋)+T(⌈n2⌉)+f(n)T(n)=T(⌊n2⌋)+T(⌈n2⌉)+f(n)\qquad T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + f(n) zu T′(n)=2T′(n2)+f(n)T′(n)=2T′(n2)+f(n)\qquad T'(n) = …



3
Lösen von Rekursionsgleichungen mit zwei Rekursionsaufrufen
Ich versuche, eine ΘΘ\Theta Grenze für die folgende Wiederholungsgleichung zu finden: T(n)=2T(n/2)+T(n/3)+2n2+5n+42T(n)=2T(n/2)+T(n/3)+2n2+5n+42 T(n) = 2 T(n/2) + T(n/3) + 2n^2+ 5n + 42 Ich denke, der Hauptsatz ist aufgrund der unterschiedlichen Anzahl von Teilproblemen und Unterteilungen ungeeignet. Auch Rekursionsbäume funktionieren nicht, da es kein T(1)T(1)T(1) bzw. T(0)T(0)T(0) .

2
Hauptsatz nicht anwendbar?
Gegeben ist die folgende rekursive Gleichung wir wollen den Hauptsatz anwenden und beachten, dassT(n)=2T(n2)+nlognT(n)=2T(n2)+nlog⁡n T(n) = 2T\left(\frac{n}{2}\right)+n\log n nlog2(2)=n.nlog2⁡(2)=n. n^{\log_2(2)} = n. Nun überprüfen wir die ersten beiden Fälle auf , dh obε>0ε>0\varepsilon > 0 odernlogn∈O(n1−ε)nlog⁡n∈O(n1−ε)n\log n \in O(n^{1-\varepsilon}) .nlogn∈Θ(n)nlog⁡n∈Θ(n)n\log n \in \Theta(n) Die beiden Fälle sind nicht erfüllt. Wir …


1
Lösen
Einführung in Algorithmen , 3. Ausgabe (S. 95) enthält ein Beispiel für die Lösung der Wiederholung T.( n ) = 3 T.(n4) +n⋅log( n )T(n)=3T(n4)+n⋅log⁡(n)\displaystyle T(n)= 3T\left(\frac{n}{4}\right) + n\cdot \log(n) durch Anwendung des Hauptsatzes. Ich bin sehr verwirrt darüber, wie es gemacht wird. Also, erste Schritt besteht darin, mit .a …

2
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.