Als «model-based-clustering» getaggte Fragen

1
Robuste Cluster-Methode für gemischte Daten in R.
Ich möchte einen kleinen Datensatz gruppieren (64 Beobachtungen von 4 Intervallvariablen und einer einzelnen kategorialen Drei-Faktor-Variablen). Jetzt bin ich ziemlich neu in der Clusteranalyse, aber ich bin mir bewusst, dass seit den Tagen, als hierarchisches Clustering oder k-means die einzigen verfügbaren Optionen waren, erhebliche Fortschritte erzielt wurden. Insbesondere scheinen neue …

1
Mclust Modellauswahl
Das R-Paket mclustverwendet BIC als Kriterium für die Auswahl des Clustermodells. Nach meinem Verständnis sollte ein Modell mit dem niedrigsten BIC gegenüber anderen Modellen ausgewählt werden (wenn Sie sich nur für BIC interessieren). Wenn jedoch alle BIC-Werte negativ sind, Mclustwird standardmäßig das Modell mit dem höchsten BIC-Wert verwendet. Mein allgemeines …

2
Warum würde ein statistisches Modell bei einem riesigen Datensatz überanpassen?
Für mein aktuelles Projekt muss ich möglicherweise ein Modell erstellen, um das Verhalten einer bestimmten Personengruppe vorherzusagen. Der Trainingsdatensatz enthält nur 6 Variablen (ID dient nur zu Identifikationszwecken): id, age, income, gender, job category, monthly spend in dem monthly spendist die Antwortvariable. Der Trainingsdatensatz enthält jedoch ungefähr 3 Millionen Zeilen, …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 


1
Was sind die Hauptunterschiede zwischen taxometrischen Analysen (z. B. MAXCOV, MAXEIG) und Latent Class-Analysen?
Neuere Forschungen haben versucht festzustellen, ob bestimmte psychologische Konstrukte latent dimensional oder taxonisch sind (dh einschließlich Taxons oder Klassen). Beispielsweise könnten Forscher daran interessiert sein, herauszufinden, ob es eine bestimmte "Klasse" von Menschen gibt, bei denen es wahrscheinlicher ist, dass sie nach einer Verletzung chronische Schmerzen entwickeln, oder ob das …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.