3
Finden Sie die Verteilung und transformieren Sie sie in die Normalverteilung
Ich habe Daten, die beschreiben, wie oft ein Ereignis während einer Stunde stattfindet ("Anzahl pro Stunde", nph) und wie lange die Ereignisse dauern ("Dauer in Sekunden pro Stunde", dph). Dies sind die Originaldaten: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, …
8
normal-distribution
data-transformation
logistic
generalized-linear-model
ridge-regression
t-test
wilcoxon-signed-rank
paired-data
naive-bayes
distributions
logistic
goodness-of-fit
time-series
eviews
ecm
panel-data
reliability
psychometrics
validity
cronbachs-alpha
self-study
random-variable
expected-value
median
regression
self-study
multiple-regression
linear-model
forecasting
prediction-interval
normal-distribution
excel
bayesian
multivariate-analysis
modeling
predictive-models
canonical-correlation
rbm
time-series
machine-learning
neural-networks
fishers-exact
factorisation-theorem
svm
prediction
linear
reinforcement-learning
cdf
probability-inequalities
ecdf
time-series
kalman-filter
state-space-models
dynamic-regression
index-decomposition
sampling
stratification
cluster-sample
survey-sampling
distributions
maximum-likelihood
gamma-distribution