Statistiken und Big Data

Fragen und Antworten für Personen, die sich für Statistik, maschinelles Lernen, Datenanalyse, Data Mining und Datenvisualisierung interessieren




5
Wie sollte ein einzelner Forscher über die Rate falscher Entdeckungen denken?
Ich habe versucht, mir Gedanken darüber zu machen, wie die False Discovery Rate (FDR) die Schlussfolgerungen des einzelnen Forschers beeinflussen sollte. Sollten Sie zum Beispiel Ihre Ergebnisse bei diskontieren, selbst wenn sie bei signifikant sind ? Hinweis: Ich spreche vom FDR im Zusammenhang mit der Untersuchung der Ergebnisse mehrerer Studien …

3
ob Indikator / Binär / Dummy-Prädiktoren für LASSO neu skaliert werden sollen
Für das LASSO (und andere Modellauswahlverfahren) ist es entscheidend, die Prädiktoren neu zu skalieren. Die allgemeine Empfehlung, der ich folge, ist einfach, eine Normierung mit 0 Mittelwerten und 1 Standardabweichung für kontinuierliche Variablen zu verwenden. Aber was gibt es mit Dummies zu tun? ZB einige angewandte Beispiele aus derselben (ausgezeichneten) …

3
Welchen
Ich versuche, Varianzinflationsfaktoren mithilfe der vifFunktion im R-Paket zu interpretieren car. Die Funktion druckt sowohl eine verallgemeinerte und auch GVIF 1 / ( 2 ⋅ df ) . Laut der Hilfedatei dieser letztere WertVIFVIF\text{VIF}GVIF1/(2⋅df)GVIF1/(2⋅df)\text{GVIF}^{1/(2\cdot\text{df})} Um die Dimension des Vertrauensellipsoids anzupassen, gibt die Funktion auch GVIF ^ [1 / (2 * …

3
Warum ist eine Stichproben-Kovarianzmatrix singulär, wenn die Stichprobengröße kleiner als die Anzahl der Variablen ist?
Angenommen, ich habe eine ppp dimensionale multivariate Gauß-Verteilung. Und ich nehme nnn Beobachtungen (jeder von ihnen ein ppp -vector) aus dieser Verteilung berechnen , und die Probe Kovarianzmatrix SSS . In dieser Arbeit geben die Autoren an, dass die mit berechnete Kovarianzmatrix der Stichprobe p>np>np > nsingulär ist. Wie ist …

5
Was bedeutet Interaktionstiefe in GBM?
Ich hatte eine Frage zum Interaktionstiefenparameter in gbm in R. Dies mag eine Noob-Frage sein, für die ich mich entschuldige, aber wie zeigt der Parameter, von dem ich glaube, dass er die Anzahl der Endknoten in einem Baum angibt, im Grunde genommen X-way an Interaktion zwischen den Prädiktoren? Ich versuche …



5
Wie verwende ich die SVD bei der kollaborativen Filterung?
Ich bin ein bisschen verwirrt darüber, wie die SVD bei der kollaborativen Filterung verwendet wird. Angenommen, ich habe ein soziales Diagramm und erstelle aus den Kanten eine Adjazenzmatrix. Dann nehme ich eine SVD (vergessen wir die Regularisierung, Lernraten, Sparsity-Optimierungen usw.). Wie verwende ich diese SVD, um meine Empfehlungen zu verbessern? …


5
Wie kann der Least Square Estimator für die multiple lineare Regression abgeleitet werden?
Im einfachen linearen Regressionsfall können Sie den Schätzer für kleinste Quadrate , sodass Sie nicht kennen müssen, um \ hat \ beta_1 zu schätzeny=β0+β1xy=β0+β1xy=\beta_0+\beta_1xβ^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2β^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2\hat\beta_1=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sum(x_i-\bar x)^2}β^0β^0\hat\beta_0β^1β^1\hat\beta_1 Angenommen, ich habe y=β1x1+β2x2y=β1x1+β2x2y=\beta_1x_1+\beta_2x_2 . Wie kann ich \ hat \ beta_1 ableiten, β^1β^1\hat\beta_1ohne \ hat \ beta_2 zu schätzen β^2β^2\hat\beta_2? oder geht …

2
Was bedeutet der Begriff sättigende Nichtlinearitäten?
Ich habe die Abhandlung ImageNet Classification with Deep Convolutional Neural Networks gelesen und in Abschnitt 3 wurde die Architektur ihres Convolutional Neural Network erläutert, wie sie es vorzogen: nicht sättigende Nichtlinearitätf(x)=max(0,x).f(x)=max(0,x).f(x) = max(0, x). weil es schneller war zu trainieren. In dieser Arbeit scheinen sie sich auf gesättigte Nichtlinearitäten als …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.