Als «categorical-data» getaggte Fragen

Kategoriale Daten können eine begrenzte (normalerweise feste) Anzahl möglicher Werte annehmen, die als Kategorien bezeichnet werden. Kategoriale Werte "Label", sie "messen" nicht. Nominale und dichotome / binäre Skalentypen sind kategorisch. Einige Leute betrachten die Ordnungsskala auch als kategorisch.

13
K-Means Clustering für gemischte numerische und kategoriale Daten
Mein Datensatz enthält eine Reihe numerischer und eine kategoriale Attribute. Sagen Sie NumericAttr1, NumericAttr2, ..., NumericAttrN, CategoricalAttr, wo CategoricalAttrnimmt einen von drei möglichen Werten: CategoricalAttrValue1, CategoricalAttrValue2oder CategoricalAttrValue3. Ich verwende die standardmäßige Implementierung des k-means-Clustering-Algorithmus für Octave https://blog.west.uni-koblenz.de/2012-07-14/a-working-k-means-code-for-octave/ . Es funktioniert nur mit numerischen Daten. Also meine Frage: Ist es richtig, …

3
Wann wird One Hot Encoding vs LabelEncoder vs DictVectorizor verwendet?
Ich erstelle seit einiger Zeit Modelle mit kategorialen Daten. In dieser Situation verwende ich standardmäßig die LabelEncoder-Funktion von scikit-learn, um diese Daten vor dem Erstellen eines Modells zu transformieren. Ich verstehe den Unterschied zwischen OHE, LabelEncoderund DictVectorizorin Hinblick darauf, was sie auf die Daten zu tun, aber was mir nicht …

3
Kombinieren von kategorialen und kontinuierlichen Eingabefunktionen für das Training neuronaler Netze
Angenommen, wir haben zwei Arten von Eingabefunktionen: kategorial und kontinuierlich. Die kategorialen Daten können als One-Hot-Code A dargestellt werden, während die kontinuierlichen Daten nur ein Vektor B im N-dimensionalen Raum sind. Es scheint, dass die einfache Verwendung von concat (A, B) keine gute Wahl ist, da A, B völlig unterschiedliche …


1
Merkmalsbedeutung mit kategorialen Merkmalen mit hoher Kardinalität für die Regression (numerisch abhängige Variable)
Ich habe versucht, Feature-Wichtigkeiten aus zufälligen Wäldern zu verwenden, um eine empirische Feature-Auswahl für ein Regressionsproblem durchzuführen, bei dem alle Features kategorisch sind und viele von ihnen viele Ebenen haben (in der Größenordnung von 100-1000). Da bei der One-Hot-Codierung für jede Ebene eine Dummy-Variable erstellt wird, gelten die Feature-Wichtigkeiten für …



4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
So konvertieren Sie kategoriale Daten in Pyspark in numerische Daten
Ich verwende Ipython Notebook, um mit Pyspark-Anwendungen zu arbeiten. Ich habe eine CSV-Datei mit vielen kategorialen Spalten, um festzustellen, ob das Einkommen unter oder über dem Bereich von 50.000 liegt. Ich möchte einen Klassifizierungsalgorithmus durchführen, der alle Eingaben verwendet, um den Einkommensbereich zu bestimmen. Ich muss ein Wörterbuch mit Variablen …


3
Beste Sprachen für wissenschaftliches Rechnen [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Es scheint, als ob in den meisten Sprachen …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

3
Wie kann ich eine Klassifizierung mit nicht festgelegten kategorialen Daten durchführen?
Ich habe ein Klassifizierungsproblem mit kategorialen und numerischen Daten. Das Problem, mit dem ich konfrontiert bin, ist, dass meine kategorialen Daten nicht festgelegt sind. Dies bedeutet, dass der neue Kandidat, dessen Bezeichnung ich vorhersagen möchte, möglicherweise eine neue Kategorie hat, die zuvor nicht beobachtet wurde. Wenn zum Beispiel meine kategorialen …

3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

4
Clustering für gemischte numerische und nominale diskrete Daten
Meine Daten enthalten binäre (numerische) und nominelle / kategoriale Umfrageantworten. Alle Antworten sind diskret und auf individueller Ebene. Die Daten haben eine Form (n = 7219, p = 105). Paar Dinge: Ich versuche, eine Clustering-Technik mit einem Ähnlichkeitsmaß zu identifizieren, das für kategoriale und numerische Binärdaten funktioniert. Es gibt Techniken …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.