Die Worteinbettung ist der Sammelbegriff für eine Reihe von Sprachmodellierungs- und Feature-Lerntechniken in NLP, bei denen Wörter in einem niedrigdimensionalen Raum relativ zur Vokabulargröße auf Vektoren reeller Zahlen abgebildet werden.
In vielen neuronalen Netzwerkbibliotheken gibt es eingebettete Ebenen, wie in Keras oder Lasagne . Ich bin mir nicht sicher, ob ich seine Funktion verstehe, obwohl ich die Dokumentation gelesen habe. In der Keras-Dokumentation heißt es beispielsweise: Positive ganze Zahlen (Indizes) in Dichtevektoren fester Größe umwandeln, z. [[4], [20]] -> [[0,25, …
Muss die Funktionsweise der Ebene "Einbetten" in der Keras-Bibliothek verstehen. Ich führe den folgenden Code in Python aus import numpy as np from keras.models import Sequential from keras.layers import Embedding model = Sequential() model.add(Embedding(5, 2, input_length=5)) input_array = np.random.randint(5, size=(1, 5)) model.compile('rmsprop', 'mse') output_array = model.predict(input_array) was die folgende Ausgabe …
Wie verwende ich eine Worteinbettung, um ein Dokument einem Feature-Vektor zuzuordnen, der für die Verwendung mit überwachtem Lernen geeignet ist? Ein Wort Einbettungs bildet jedes Wort auf einen Vektor v ∈ R d , wobei d einige nicht allzu große Anzahl (zB 500). Beliebte Wort Einbettungen sind word2vec und Handschuh …
Ist es nach dem Training von Wortvektoren mit word2vec besser, sie zu normalisieren, bevor Sie sie für einige nachgelagerte Anwendungen verwenden? Dh was sind die Vor- / Nachteile einer Normalisierung?
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …
Ich war beeindruckt von den Ergebnissen des ICML-Papiers 2014 " Distributed Representations of Sentences and Documents " von Le und Mikolov. Die beschriebene Technik, "Absatzvektoren" genannt, lernt unbeaufsichtigte Darstellungen von beliebig langen Absätzen / Dokumenten, basierend auf einer Erweiterung des word2vec-Modells. Der Aufsatz berichtet über die neuesten Erkenntnisse zur Stimmungsanalyse …
Ich habe mich bemüht, das Konzept der negativen Abtastung im Kontext von word2vec zu verstehen. Ich bin nicht in der Lage, die Idee der [negativen] Probenahme zu verdauen. Zum Beispiel wird in Mikolovs Arbeiten die negative Stichprobenerwartung wie folgt formuliert Logσ( ⟨ W , c ⟩ ) + k ⋅ …
Ich frage mich, warum Überspringen-Gramm für seltene Wörter besser ist als CBOW in word2vec. Ich habe die Behauptung unter https://code.google.com/p/word2vec/ gelesen .
Wie wird die Einbettungsschicht in der Keras-Einbettungsschicht trainiert? (Sagen wir, wir verwenden das Tensorflow-Backend, was bedeutet, dass es word2vec, Glove oder Fasttext ähnelt.) Angenommen, wir verwenden keine vorab trainierte Einbettung.
Ich frage mich, warum hierarchisches Softmax bei seltenen Wörtern besser ist, während negatives Sampling bei häufigen Wörtern bei den CBOW- und Skip-Gram-Modellen von word2vec besser ist. Ich habe die Behauptung unter https://code.google.com/p/word2vec/ gelesen .
Ich habe Probleme beim Verständnis des Sprunggrammmodells des Word2Vec-Algorithmus. In fortlaufenden Wortsäcken ist leicht zu erkennen, wie die Kontextwörter in das neuronale Netzwerk "passen" können, da Sie sie im Grunde nach dem Multiplizieren jeder der One-Hot-Codierungsdarstellungen mit der Eingabematrix W mitteln. Im Fall von Skip-Gram erhalten Sie den Eingangswortvektor jedoch …
Ich versuche, ungefähr 60 Millionen Phrasen in einen Vektorraum einzubetten und dann die Kosinusähnlichkeit zwischen ihnen zu berechnen . Ich habe sklearns CountVectorizermit einer speziell entwickelten Tokenizer-Funktion verwendet, die Unigramme und Bigramme erzeugt. Es stellt sich heraus, dass ich eine enorme Anzahl von Spalten berücksichtigen muss, die linear in der …
Ich bin sehr neu in Worteinbettungen. Ich möchte visualisieren, wie die Dokumente nach dem Lernen aussehen. Ich habe gelesen, dass t-SNE der Ansatz ist, dies zu tun. Ich habe 100.000 Dokumente mit 250 Dimensionen als Größe der Einbettung. Es gibt auch mehrere Pakete zur Verfügung. Für t-SNE weiß ich jedoch …
Eine Möglichkeit zum Generieren von Worteinbettungen ist die folgende ( Spiegelung ): Holen Sie sich eine Korpora, zB "Ich fliege gerne. Ich mag NLP. Ich mag tiefes Lernen." Erstellen Sie daraus das Wort Cooccurrence Matrix: Führen Sie SVD für X.XX durch und behalten Sie die ersten kkk Spalten von U …
Ich habe Probleme, diesen Satz zu verstehen: Die erste vorgeschlagene Architektur ähnelt der Feedforward-NNLM, bei der die nichtlineare verborgene Schicht entfernt und die Projektionsschicht für alle Wörter (nicht nur für die Projektionsmatrix) gemeinsam genutzt wird. Somit werden alle Wörter an dieselbe Position projiziert (ihre Vektoren werden gemittelt). Was ist die …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.