Als «unsupervised-learning» getaggte Fragen

Auffinden versteckter (statistischer) Strukturen in unbeschrifteten Daten, einschließlich Clustering und Merkmalsextraktion zur Reduzierung der Dimensionalität.

3
Wie kann eine hübsche grafische Darstellung der Ergebnisse der k-means Clusteranalyse erstellt werden?
Ich benutze R, um K-bedeutet Clustering zu machen. Ich verwende 14 Variablen, um K-means auszuführen Was ist ein hübscher Weg, um die Ergebnisse von K-means zu zeichnen? Gibt es bereits Implementierungen? Erschweren 14 Variablen das Zeichnen der Ergebnisse? Ich habe etwas namens GGcluster gefunden, das cool aussieht, sich aber noch …

2
Wie kann ein künstliches neuronales Netzwerk ANN für unbeaufsichtigtes Clustering verwendet werden?
Ich verstehe, wie artificial neural network (ANN)man mit Backpropogation überwacht trainieren kann, um die Anpassung zu verbessern, indem man den Fehler in den Vorhersagen verringert. Ich habe gehört, dass ein ANN für unbeaufsichtigtes Lernen verwendet werden kann, aber wie kann dies ohne irgendeine Kostenfunktion durchgeführt werden, um die Optimierungsstufen zu …



3
Warum gibt es einen Unterschied zwischen der manuellen Berechnung eines Konfidenzintervalls für eine logistische Regression von 95% und der Verwendung der Funktion confint () in R?
Sehr geehrte Damen und Herren, mir ist etwas Merkwürdiges aufgefallen, das ich Ihnen nicht erklären kann. Zusammenfassend lässt sich sagen, dass der manuelle Ansatz zur Berechnung eines Konfidenzintervalls in einem logistischen Regressionsmodell und die R-Funktion confint()unterschiedliche Ergebnisse liefern. Ich habe die angewandte logistische Regression von Hosmer & Lemeshow (2. Auflage) …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 


2
Betreutes Lernen, unbeaufsichtigtes Lernen und Bestärkungslernen: Workflow-Grundlagen
Überwachtes Lernen 1) Ein menschliches baut einen Klassifizierer basierend auf Eingabe und Ausgabedaten 2) Dieser Klassifikator wird mit einem Trainingsdatensatz trainiert 3) Dieser Klassifikator wird mit einem Testdatensatz getestet 4) Bereitstellung, wenn die Ausgabe zufriedenstellend ist Um verwendet zu werden, wenn "Ich weiß, wie man diese Daten klassifiziert, ich brauche …

5
Unterscheidung zwischen zwei Gruppen in Statistik und maschinellem Lernen: Hypothesentest vs. Klassifikation vs. Clustering
Angenommen, ich habe zwei Datengruppen mit der Bezeichnung A und B (jede enthält z. B. 200 Proben und 1 Merkmal), und ich möchte wissen, ob sie unterschiedlich sind. Ich könnte: a) Führen Sie einen statistischen Test (z. B. t-Test) durch, um festzustellen, ob sie sich statistisch unterscheiden. b) Verwenden Sie …



3
Tägliche Zeitreihenanalyse
Ich versuche eine Zeitreihenanalyse durchzuführen und bin neu in diesem Bereich. Ich habe eine tägliche Zählung eines Ereignisses von 2006-2009 und möchte ein Zeitreihenmodell dazu passen. Hier sind die Fortschritte, die ich gemacht habe: timeSeriesObj = ts(x,start=c(2006,1,1),frequency=365.25) plot.ts(timeSeriesObj) Das resultierende Diagramm, das ich erhalte, ist: Um zu überprüfen, ob Saisonalität …

3
Beaufsichtigtes Clustering oder Klassifikation?
Die zweite Frage ist, dass ich in einer Diskussion irgendwo im Internet über "überwachtes Clustering" gesprochen habe. Soweit ich weiß, ist Clustering nicht überwacht. Was genau bedeutet "überwachtes Clustering"? Was ist der Unterschied zur "Klassifizierung"? Es gibt viele Links, die darüber sprechen: http://www.cs.uh.edu/docs/cosc/technical-reports/2005/05_10.pdf http://books.nips.cc/papers/files/nips23/NIPS2010_0427.pdf http://engr.case.edu/ray_soumya/mlrg/supervised_clustering_finley_joachims_icml05.pdf http://www.public.asu.edu/~kvanlehn/Stringent/PDF/05CICL_UP_DB_PWJ_KVL.pdf http://www.machinelearning.org/proceedings/icml2007/papers/366.pdf http://www.cs.cornell.edu/~tomf/publications/supervised_kmeans-08.pdf http://jmlr.csail.mit.edu/papers/volume6/daume05a/daume05a.pdf etc …


3
Wie kann man ein Ergebnis mit nur positiven Fällen als Training vorhersagen?
Nehmen wir der Einfachheit halber an, ich arbeite am klassischen Beispiel von Spam- / Nicht-Spam-E-Mails. Ich habe 20000 E-Mails. Davon weiß ich, dass 2000 Spam sind, aber ich habe kein Beispiel für Nicht-Spam-E-Mails. Ich möchte vorhersagen, ob es sich bei den verbleibenden 18000 um Spam handelt oder nicht. Im Idealfall …

2
Was ist die vielfältige Annahme beim teilüberwachten Lernen?
Ich versuche herauszufinden, was die mannigfaltige Annahme im semi-überwachten Lernen bedeutet. Kann jemand auf einfache Weise erklären? Ich kann die Intuition dahinter nicht verstehen. Es besagt, dass Ihre Daten auf einer niedrigdimensionalen Mannigfaltigkeit liegen, die in einem höherdimensionalen Raum eingebettet ist. Ich habe nicht verstanden, was das bedeutet.

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.