Als «svm» getaggte Fragen

Support Vector Machine bezieht sich auf "eine Reihe verwandter überwachter Lernmethoden, die Daten analysieren und Muster erkennen, die für die Klassifizierungs- und Regressionsanalyse verwendet werden".

7
Welchen Einfluss hat C in SVMs mit linearem Kernel?
Ich verwende derzeit eine SVM mit einem linearen Kernel, um meine Daten zu klassifizieren. Es liegt kein Fehler im Trainingssatz vor. Ich habe verschiedene Werte für den Parameter ausprobiert ( ). Dies hat den Fehler im Test-Set nicht verändert.10 - 5 , … , 10 2CCC10- 5, … , 10210−5,…,10210^{-5}, …

5
Wie funktioniert eine Support Vector Machine (SVM)?
Wie funktioniert eine Support Vector Machine (SVM) und was unterscheidet sie von anderen linearen Klassifikatoren wie dem linearen Perceptron , der linearen Diskriminanzanalyse oder der logistischen Regression ? * (* Ich denke über die zugrunde liegenden Motivationen für den Algorithmus, Optimierungsstrategien, Generalisierungsfähigkeiten und Laufzeitkomplexität nach. )

4
Wie kann man intuitiv erklären, was ein Kernel ist?
Bei vielen maschinellen Lernklassifikatoren (z. B. Support-Vektor-Maschinen) kann ein Kernel angegeben werden. Was wäre eine intuitive Art zu erklären, was ein Kernel ist? Ein Aspekt, über den ich nachgedacht habe, ist die Unterscheidung zwischen linearen und nichtlinearen Kerneln. In einfachen Worten könnte ich von "linearen Entscheidungsfunktionen" und "nichtlinearen Entscheidungsfunktionen" sprechen. …


3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

1
Helfen Sie mir, Support Vector Machines zu verstehen
Ich verstehe die Grundlagen des Ziels von Support Vector Machines in Bezug auf die Klassifizierung einer Eingabe in mehrere verschiedene Klassen, aber was ich nicht verstehe, sind einige der wichtigsten Details. Für den Anfang bin ich ein bisschen durch die Verwendung von Slack-Variablen verwirrt. Was ist ihr Zweck? Ich mache …



4
Warum sollte man sich beim Anpassen von SVM mit dem doppelten Problem beschäftigen?
Angesichts der Datenpunkte und Etiketten y 1 , ... , y n ∈ { - 1 , 1 } , das Problem harter Rand SVM Ur istx1,…,xn∈Rdx1,…,xn∈Rdx_1, \ldots, x_n \in \mathbb{R}^dy1,…,yn∈{−1,1}y1,…,yn∈{−1,1}y_1, \ldots, y_n \in \left \{-1, 1 \right\} s.t.minimizew,w012wTwminimizew,w012wTw \text{minimize}_{w, w_0} \quad \frac{1}{2} w^T w s.t.∀i:yi(wTxi+w0)≥1s.t.∀i:yi(wTxi+w0)≥1 \text{s.t.} \quad \forall i: …
50 svm 

2
Warum verwenden Convolutional Neural Networks keine Support Vector Machine zur Klassifizierung?
In den letzten Jahren sind Convolutional Neural Networks (CNNs) zum Stand der Technik für die Objekterkennung in der Computersicht geworden. Typischerweise besteht ein CNN aus mehreren Faltungsschichten, gefolgt von zwei vollständig verbundenen Schichten. Eine Intuition dahinter ist, dass die Faltungsschichten eine bessere Darstellung der Eingabedaten lernen und die vollständig verbundenen …

5
Was sind Alternativen für Gradient Descent?
Gradient Descent hat das Problem, in Local Minima hängen zu bleiben. Wir müssen Exponentialzeiten des Gradientenabfalls ausführen, um globale Minima zu finden. Kann mir jemand Alternativen zum Gradientenabstieg, wie sie beim Lernen neuronaler Netze angewendet werden, zusammen mit ihren Vor- und Nachteilen nennen?


5
Wie interpretiert man SVM-Feature-Gewichte?
Ich versuche, die variablen Gewichte zu interpretieren, die durch Anpassen einer linearen SVM gegeben sind. (Ich benutze Scikit-Learn ): from sklearn import svm svm = svm.SVC(kernel='linear') svm.fit(features, labels) svm.coef_ Ich kann in der Dokumentation nichts finden, was genau angibt, wie diese Gewichte berechnet oder interpretiert werden. Hat das Vorzeichen des …

3
Vergleich von SVM und logistischer Regression
Kann mir bitte jemand eine Vorstellung davon geben, wann ich mich für SVM oder LR entscheiden soll? Ich möchte die Intuition hinter dem Unterschied zwischen den Optimierungskriterien für das Erlernen der Hyperebene der beiden verstehen, wobei die jeweiligen Ziele wie folgt lauten: SVM: Versuchen Sie, den Abstand zwischen den nächstgelegenen …

3
SVM, Überanpassung, Fluch der Dimensionalität
Mein Datensatz ist klein (120 Samples), die Anzahl der Features variiert jedoch von (1000-200.000). Obwohl ich eine Feature-Auswahl vornehme, um eine Untergruppe von Features auszuwählen, ist diese möglicherweise immer noch zu groß. Meine erste Frage ist, wie SVM mit Überanpassung umgeht, wenn überhaupt. Zweitens bin ich beim Studium der Überanpassung …


3
Wie kann man beweisen, dass die radiale Basisfunktion ein Kernel ist?
Wie kann man beweisen, dass die radiale Basisfunktion ein Kernel ist? Um dies zu beweisen, müssen wir meines Wissens eine der folgenden Aussagen treffen:k(x,y)=exp(−||x−y||2)2σ2)k(x,y)=exp⁡(−||x−y||2)2σ2)k(x, y) = \exp(-\frac{||x-y||^2)}{2\sigma^2}) Für jede Menge von Vektoren Matrix = positiv semidefinit.x1,x2,...,xnx1,x2,...,xnx_1, x_2, ..., x_nK(x1,x2,...,xn)K(x1,x2,...,xn)K(x_1, x_2, ..., x_n)(k(xi,xj))n×n(k(xi,xj))n×n(k(x_i, x_j))_{n \times n} Eine Abbildung kann wie = …
35 svm  kernel-trick 

3
Gibt es ein Supervised-Learning-Problem, bei dem (tiefe) neuronale Netze offensichtlich keine anderen Methoden übertreffen konnten?
Ich habe gesehen, dass die Leute SVM und Kernel sehr genau unter die Lupe genommen haben und als Einsteiger in das maschinelle Lernen ziemlich interessant aussehen. Aber wenn wir erwarten, dass wir in Bezug auf (tiefes) neuronales Netzwerk fast immer eine überdurchschnittliche Lösung finden, was bedeutet es dann, in dieser …

5
Kann SVM Streaming-Lernen für ein Beispiel gleichzeitig durchführen?
Ich habe einen Streaming-Datensatz, Beispiele sind einzeln verfügbar. Ich müsste sie in mehreren Klassen klassifizieren. Sobald ich dem Lernprozess ein Trainingsbeispiel gegeben habe, muss ich das Beispiel verwerfen. Gleichzeitig verwende ich auch das neueste Modell, um Vorhersagen für unbeschriftete Daten durchzuführen. Meines Wissens ist ein neuronales Netzwerk in der Lage, …

3
Was ist mit "schwacher Lernender" gemeint?
Kann mir jemand sagen, was mit dem Ausdruck "schwacher Lernender" gemeint ist? Soll es eine schwache Hypothese sein? Ich bin verwirrt über die Beziehung zwischen einem schwachen Lernenden und einem schwachen Klassifikator. Sind beide gleich oder gibt es einen Unterschied? In dem Adaboost-Algorithmus T=10. Was ist damit gemeint? Warum wählen …

3
Logistische Kernel-Regression vs. SVM
Wie allen bekannt ist, kann SVM die Kernel-Methode verwenden, um Datenpunkte in höhere Räume zu projizieren, sodass Punkte durch einen linearen Raum getrennt werden können. Wir können aber auch die logistische Regression verwenden, um diese Grenze im Kernelraum zu wählen. Was sind also die Vorteile von SVM? Da SVM ein …
32 svm 



2
libsvm Datenformat [geschlossen]
Ich verwende das Tool libsvm ( http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ) zur Unterstützung der Vektorklassifizierung. Ich bin jedoch verwirrt über das Format der Eingabedaten. Aus der README: Das Format der Trainings- und Testdatendatei ist: <label> <index1>:<value1> <index2>:<value2> ... . . . Jede Zeile enthält eine Instanz und wird mit einem '\ n'-Zeichen abgeschlossen. …



3
Unterschied zwischen einem SVM und einem Perceptron
Ich bin ein bisschen verwirrt mit dem Unterschied zwischen einem SVM und einem Perzeptron. Lassen Sie mich hier versuchen, mein Verständnis zusammenzufassen, und bitte korrigieren Sie, wo ich falsch liege, und füllen Sie das aus, was ich verpasst habe. Das Perceptron versucht nicht, den Abstand zu optimieren. Solange eine Hyperebene …

3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …

2
Was ist das statistische Modell hinter dem SVM-Algorithmus?
Ich habe gelernt, dass der erste Schritt beim Umgang mit Daten mithilfe eines modellbasierten Ansatzes die Modellierung von Datenprozeduren als statistisches Modell ist. Der nächste Schritt ist die Entwicklung eines effizienten / schnellen Inferenz- / Lernalgorithmus basierend auf diesem statistischen Modell. Ich möchte also fragen, welches statistische Modell hinter dem …

1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.