Als «regression» getaggte Fragen

Techniken zum Analysieren der Beziehung zwischen einer (oder mehreren) "abhängigen" Variablen und "unabhängigen" Variablen.


5
Inwiefern unterscheiden sich Neigungsbewertungen von der Addition von Kovariaten in einer Regression, und wann werden sie letzteren vorgezogen?
Ich gebe zu, dass ich in Bezug auf Neigungsbewertungen und Kausalanalysen relativ neu bin. Eine Sache, die mir als Neuling nicht klar ist, ist, wie sich das "Ausbalancieren" unter Verwendung von Neigungsbewertungen mathematisch von dem unterscheidet, was passiert, wenn wir Kovariaten in einer Regression hinzufügen? Was ist anders an der …



4
Sollten Kovariaten, die statistisch nicht signifikant sind, bei der Erstellung eines Modells berücksichtigt werden?
Ich habe mehrere Kovariaten in meiner Berechnung für ein Modell, und nicht alle sind statistisch signifikant. Sollte ich die entfernen, die nicht sind? Diese Frage diskutiert das Phänomen, beantwortet aber nicht meine Frage: Wie interpretiere ich den nicht signifikanten Effekt einer Kovariate in ANCOVA? Die Antwort auf diese Frage enthält …

6
Least-Angle-Regression vs. Lasso
Die Least-Angle-Regression und das Lasso tendieren dazu, sehr ähnliche Regularisierungspfade zu erzeugen (identisch, außer wenn ein Koeffizient Null überschreitet). Beide können durch praktisch identische Algorithmen effizient angepasst werden. Gibt es jemals einen praktischen Grund, eine Methode der anderen vorzuziehen?
39 regression  lasso 

3
Ist eine Standardisierung erforderlich, bevor die logistische Regression angepasst wird?
Meine Frage ist, ob wir den Datensatz standardisieren müssen, um sicherzustellen, dass alle Variablen den gleichen Maßstab zwischen [0,1] haben, bevor die logistische Regression angepasst wird. Die Formel lautet: xi−min(xi)max(xi)−min(xi)xi−min(xi)max(xi)−min(xi)\frac{x_i-\min(x_i)}{\max(x_i)-\min(x_i)} Mein Datensatz enthält 2 Variablen, sie beschreiben dasselbe für zwei Kanäle, aber die Lautstärke ist unterschiedlich. Angenommen, es ist die …

3
Warum wird die polynomiale Regression als Sonderfall der multiplen linearen Regression angesehen?
Wenn die polynomiale Regression nichtlineare Beziehungen modelliert, wie kann sie als Sonderfall der multiplen linearen Regression betrachtet werden? Wikipedia stellt fest: "Obwohl die polynomiale Regression ein nichtlineares Modell an die Daten anpasst, ist sie als statistisches Schätzproblem linear in dem Sinne, dass die Regressionsfunktion in den geschätzten unbekannten Parametern linear …

2
Wann passen Poisson- und negative Binomialregressionen zu denselben Koeffizienten?
Ich habe festgestellt, dass bei R-, Poisson- und negativen Binomial- (NB-) Regressionen für kategoriale, aber nicht kontinuierliche Prädiktoren immer dieselben Koeffizienten zu passen scheinen. Beispiel: Hier ist eine Regression mit einem kategorialen Prädiktor: data(warpbreaks) library(MASS) rs1 = glm(breaks ~ tension, data=warpbreaks, family="poisson") rs2 = glm.nb(breaks ~ tension, data=warpbreaks) #compare coefficients …

5
Vorhersage in der Cox-Regression
Ich mache eine multivariate Cox-Regression, ich habe meine signifikanten unabhängigen Variablen und Beta-Werte. Das Modell passt sehr gut zu meinen Daten. Jetzt möchte ich mein Modell verwenden und das Überleben einer neuen Beobachtung vorhersagen. Ich bin mir nicht sicher, wie ich das mit einem Cox-Modell machen soll. Bei einer linearen …

8
Ist es gültig, eine Basisvariable als Kontrollvariable einzuschließen, wenn die Auswirkung einer unabhängigen Variablen auf die Änderungsergebnisse getestet wird?
Ich versuche eine OLS-Regression durchzuführen: DV: Gewichtsänderung über ein Jahr (Anfangsgewicht - Endgewicht) IV: Ob Sie trainieren oder nicht. Es erscheint jedoch vernünftig, dass schwerere Menschen mehr Gewicht pro Trainingseinheit verlieren als dünnere. Daher wollte ich eine Kontrollvariable einfügen: CV: Anfangsstartgewicht. Das Anfangsgewicht wird jetzt jedoch BEIDE verwendet, um die …



3
Varianz der
TL, DR: Es sieht so aus, als ob entgegen häufig wiederholter Ratschläge die einmalige Kreuzvalidierung (LOO-CV) - das heißt, derKKK fache CV mitKKK (die Anzahl der Falten) ist gleichNNN (die Anzahl) der Trainingsbeobachtungen) - liefert Schätzungen des Generalisierungsfehlers, diefür jedes K am wenigsten variabel sind, und nicht die variabelsten, wobei …

3
Vergleich von SVM und logistischer Regression
Kann mir bitte jemand eine Vorstellung davon geben, wann ich mich für SVM oder LR entscheiden soll? Ich möchte die Intuition hinter dem Unterschied zwischen den Optimierungskriterien für das Erlernen der Hyperebene der beiden verstehen, wobei die jeweiligen Ziele wie folgt lauten: SVM: Versuchen Sie, den Abstand zwischen den nächstgelegenen …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.