Als «kernel-trick» getaggte Fragen

Kernel-Methoden werden beim maschinellen Lernen verwendet, um lineare Techniken auf nichtlineare Situationen zu verallgemeinern, insbesondere SVMs, PCA und GPs. Nicht zu verwechseln mit [Kernel-Glättung] für die Kernel-Dichteschätzung (KDE) und die Kernel-Regression.

4
Wie kann man intuitiv erklären, was ein Kernel ist?
Bei vielen maschinellen Lernklassifikatoren (z. B. Support-Vektor-Maschinen) kann ein Kernel angegeben werden. Was wäre eine intuitive Art zu erklären, was ein Kernel ist? Ein Aspekt, über den ich nachgedacht habe, ist die Unterscheidung zwischen linearen und nichtlinearen Kerneln. In einfachen Worten könnte ich von "linearen Entscheidungsfunktionen" und "nichtlinearen Entscheidungsfunktionen" sprechen. …


3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 





3
Wie kann man beweisen, dass die radiale Basisfunktion ein Kernel ist?
Wie kann man beweisen, dass die radiale Basisfunktion ein Kernel ist? Um dies zu beweisen, müssen wir meines Wissens eine der folgenden Aussagen treffen:k(x,y)=exp(−||x−y||2)2σ2)k(x,y)=exp⁡(−||x−y||2)2σ2)k(x, y) = \exp(-\frac{||x-y||^2)}{2\sigma^2}) Für jede Menge von Vektoren Matrix = positiv semidefinit.x1,x2,...,xnx1,x2,...,xnx_1, x_2, ..., x_nK(x1,x2,...,xn)K(x1,x2,...,xn)K(x_1, x_2, ..., x_n)(k(xi,xj))n×n(k(xi,xj))n×n(k(x_i, x_j))_{n \times n} Eine Abbildung kann wie = …
35 svm  kernel-trick 

3
Gibt es ein Supervised-Learning-Problem, bei dem (tiefe) neuronale Netze offensichtlich keine anderen Methoden übertreffen konnten?
Ich habe gesehen, dass die Leute SVM und Kernel sehr genau unter die Lupe genommen haben und als Einsteiger in das maschinelle Lernen ziemlich interessant aussehen. Aber wenn wir erwarten, dass wir in Bezug auf (tiefes) neuronales Netzwerk fast immer eine überdurchschnittliche Lösung finden, was bedeutet es dann, in dieser …


3
Unterschied zwischen einem SVM und einem Perceptron
Ich bin ein bisschen verwirrt mit dem Unterschied zwischen einem SVM und einem Perzeptron. Lassen Sie mich hier versuchen, mein Verständnis zusammenzufassen, und bitte korrigieren Sie, wo ich falsch liege, und füllen Sie das aus, was ich verpasst habe. Das Perceptron versucht nicht, den Abstand zu optimieren. Solange eine Hyperebene …

4
Der Unterschied der Kernel in SVM?
Kann mir bitte jemand den Unterschied zwischen den Kerneln in SVM erklären: Linear Polynom Gaußscher (RBF) Sigmoid Denn wie wir wissen, wird der Kernel verwendet, um unseren Eingaberaum in einen hochdimensionalen Merkmalsraum abzubilden. Und in diesem Merkmalsraum finden wir die linear trennbare Grenze. Wann und warum werden sie verwendet (unter …

3
Feature Map für den Gaußschen Kernel
In SVM ist der Gaußsche Kern wie folgt definiert: wobei x, y \ in \ mathbb {R ^ n} . Ich kenne die explizite Gleichung von \ phi nicht . Ich will es wissen.x,y∈RnφK(x,y)=exp(−∥x−y∥222σ2)=ϕ(x)Tϕ(y)K(x,y)=exp⁡(−‖x−y‖222σ2)=ϕ(x)Tϕ(y)K(x,y)=\exp\left({-\frac{\|x-y\|_2^2}{2\sigma^2}}\right)=\phi(x)^T\phi(y)x,y∈Rnx,y∈Rnx, y\in \mathbb{R^n}ϕϕ\phi Ich möchte auch wissen, ob ∑iciϕ(xi)=ϕ(∑icixi)∑iciϕ(xi)=ϕ(∑icixi)\sum_ic_i\phi(x_i)=\phi \left(\sum_ic_ix_i \right) wobei ci∈Rci∈Rc_i\in \mathbb R . Jetzt …


1
Welche Funktion könnte ein Kernel haben?
Im Kontext von maschinellem Lernen und Mustererkennung gibt es ein Konzept namens Kernel Trick . Bei Problemen, bei denen ich gefragt werde, ob eine Funktion eine Kernelfunktion sein kann oder nicht, was genau soll ich tun? Sollte ich zuerst prüfen, ob sie die Form der drei oder vier Kernfunktionen wie …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.