Als «word2vec» getaggte Fragen

word2vec ist ein zweischichtiges neuronales Netzwerk zur Textverarbeitung. Es nimmt Wörter als Eingabe und gibt einen Vektor entsprechend aus. Es verwendet eine Kombination aus Continuous Bag of Word und Skipgram-Modellimplementierung.

4
Wie kann ich die semantische Ähnlichkeit von Wörtern messen?
Was ist der beste Weg, um die semantische Ähnlichkeit von Wörtern herauszufinden? Word2Vec ist okay, aber nicht ideal: # Using the 840B word Common Crawl GloVe vectors with gensim: # 'hot' is closer to 'cold' than 'warm' In [7]: model.similarity('hot', 'cold') Out[7]: 0.59720456121072973 In [8]: model.similarity('hot', 'warm') Out[8]: 0.56784095376659627 # …

5
Bester praktischer Algorithmus für Satzähnlichkeit
Ich habe zwei Sätze, S1 und S2, die beide (normalerweise) eine Wortanzahl unter 15 haben. Was sind die praktischsten und erfolgreichsten (maschinelles Lernen) Algorithmen, die möglicherweise einfach zu implementieren sind (neuronales Netzwerk ist in Ordnung, es sei denn, die Architektur ist so kompliziert wie Google Inception usw.). Ich suche einen …


5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


4
Wie initialisiere ich ein neues word2vec-Modell mit vorab trainierten Modellgewichten?
Ich verwende die Gensim Library in Python, um das word2vector-Modell zu verwenden und zu trainieren. Kürzlich habe ich versucht, meine Modellgewichte mit einem vorab trainierten word2vec-Modell zu initialisieren, z. B. mit einem vorab trainierten Modell von GoogleNewDataset. Ich habe ein paar Wochen damit zu kämpfen. Ich habe gerade herausgefunden, dass …



2
Word2Vec-Einbettungen mit TF-IDF
Wenn Sie das word2vec-Modell trainieren (z. B. mit gensim), geben Sie eine Liste mit Wörtern / Sätzen an. Es scheint jedoch keine Möglichkeit zu geben, Gewichte für die Wörter anzugeben, die beispielsweise mit TF-IDF berechnet wurden. Ist es üblich, die Wortvektor-Einbettungen mit dem zugehörigen TF-IDF-Gewicht zu multiplizieren? Oder kann word2vec …

3
Sind Word2Vec und Doc2Vec sowohl Verteilungsdarstellung als auch verteilte Darstellung?
Ich habe gelesen, dass die Verteilungsdarstellung auf der Verteilungshypothese basiert, dass Wörter, die in einem ähnlichen Kontext vorkommen, tendenziell ähnliche Bedeutungen haben. Word2Vec und Doc2Vec werden beide gemäß dieser Hypothese modelliert. Aber in der Originalarbeit sind sogar sie als Distributed representation of words and phrasesund betitelt Distributed representation of sentences …

2
Was ist die Feature-Matrix in word2vec?
Ich bin ein Anfänger in neuronalen Netzen und erforsche derzeit das word2vec-Modell. Es fällt mir jedoch schwer zu verstehen, was die Feature-Matrix genau ist. Ich kann verstehen, dass die erste Matrix ein One-Hot-Codierungsvektor für ein bestimmtes Wort ist, aber was bedeutet die zweite Matrix? Was bedeutet konkret jeder dieser Werte …

3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

2
Warum brauchen wir 2 Matrizen für word2vec oder GloVe?
Word2vec und GloVe sind die beiden bekanntesten Methoden zum Einbetten von Wörtern. Viele Arbeiten wiesen darauf hin, dass diese beiden Modelle tatsächlich sehr nahe beieinander liegen und unter bestimmten Voraussetzungen eine Matrixfaktorisierung des ppmi der gleichzeitigen Vorkommen der Wörter im Korpus durchführen. Trotzdem kann ich nicht verstehen, warum wir für …

5
So überwinden Sie die unterschiedlichen Längen von Trainingsbeispielen bei der Arbeit mit Word Embeddings (word2vec)
Ich arbeite an der Stimmungsanalyse über Tweets mit word2vec als Wortdarstellung. Ich habe mein word2vec-Modell trainiert. Aber wenn ich meinen Klassifikator trainiere, habe ich das Problem, dass jeder Tweet eine andere Länge hat und der Klassifikator (RandomForest) alle Beispiele benötigt, um die gleiche Größe zu haben. Derzeit mittle ich für …

2
Merkmale von Wortvektoren in word2vec
Ich versuche eine Stimmungsanalyse durchzuführen. Um die Wörter in Wortvektoren umzuwandeln, verwende ich das word2vec-Modell. Angenommen, ich habe alle Sätze in einer Liste mit dem Namen "Sätze" und übergebe diese Sätze wie folgt an word2vec: model = word2vec.Word2Vec(sentences, workers=4 , min_count=40, size=300, window=5, sample=1e-3) Da ich keine Ahnung von Wortvektoren …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.