Als «naive-bayes-classifier» getaggte Fragen

1
Warum ist xgboost so viel schneller als sklearn GradientBoostingClassifier?
Ich versuche, ein Steigungsverstärkungsmodell mit über 50.000 Beispielen und 100 numerischen Merkmalen zu trainieren. XGBClassifierBewältigt 500 Bäume innerhalb von 43 Sekunden auf meiner Maschine, während GradientBoostingClassifiernur 10 Bäume (!) in 1 Minute und 2 Sekunden bearbeitet werden :( Ich habe nicht versucht, 500 Bäume zu züchten, da dies Stunden dauern …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 


1
Naive Bayes für die Klassifizierung von Text mit mehreren Etiketten
Verwendung von Naive Bayes für die Klassifizierung von Text mit mehreren Etiketten in R. Ich habe versucht, naiveBayes () aus der e1071-Bibliothek zu verwenden, aber es scheint, dass während des Trainings keine Klassenvariablen mit mehreren Labels akzeptiert werden. Ich habe TermDocumentMatrix mithilfe des Textdokumentkorpus erstellt und versucht, das Modell mithilfe …

1
Verständnis von naiven Bayes: Berechnung der bedingten Wahrscheinlichkeiten
Nehmen wir für eine Aufgabe zur Stimmungsanalyse an, wir haben einige Klassen, die durch und Merkmale .cccichichi Wir können die bedingte Wahrscheinlichkeit jeder Klasse wie : wobei jedes Merkmal darstellt und die Klasse ist wir haben. Dann können wir empirisch Unsere Prioritäten für jede Klasse sind dann gegeben durch: wobei:P.( …

1
Naive Bayes sollten aufgrund fehlender Funktionen eine Vorhersage generieren (Scikit Learn)
Angesichts der Tatsache, dass Naive Bayes die Wahrscheinlichkeit verwendet, um eine Vorhersage zu treffen, und Merkmale als bedingt unabhängig voneinander behandelt, ist es sinnvoll, dass das Modell dennoch eine Vorhersage treffen kann, da einige Merkmale in den Testdaten fehlen. Ich weiß, dass es üblich ist, fehlende Daten zu unterstellen, aber …

1
Wie geht der naive Bayes-Klassifikator mit fehlenden Daten im Training um?
Naive Bayes geht offenbar unterschiedlich mit fehlenden Daten um, je nachdem, ob sie in Trainings- oder Test- / Klassifizierungsinstanzen vorhanden sind. Bei der Klassifizierung von Instanzen wird das Attribut mit dem fehlenden Wert einfach nicht in die Wahrscheinlichkeitsberechnung einbezogen ( http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/naive-2x2.pdf ). Im Training "ist die Instanz [mit den fehlenden …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.