Als «logistic-regression» getaggte Fragen

Bezieht sich allgemein auf statistische Verfahren, die die logistische Funktion nutzen, am häufigsten verschiedene Formen der logistischen Regression


4
Ordinale Regression in R lernen?
Ich arbeite an einem Projekt und benötige Ressourcen, um mich auf den neuesten Stand zu bringen. Der Datensatz umfasst etwa 35000 Beobachtungen zu etwa 30 Variablen. Etwa die Hälfte der Variablen ist kategorisch, wobei einige viele verschiedene mögliche Werte haben. Wenn Sie also die kategorialen Variablen in Dummy-Variablen aufteilen, haben …

2
Wie führe ich eine logistische Regression mit einer großen Anzahl von Funktionen durch?
Ich habe einen Datensatz mit 330 Stichproben und 27 Merkmalen für jede Stichprobe mit einem Binärklassenproblem für die logistische Regression. Gemäß der "Regel wenn zehn" benötige ich mindestens 10 Ereignisse für jedes Feature, um eingeschlossen zu werden. Ich habe jedoch einen unausgeglichenen Datensatz mit 20% positiver Klasse und 80% negativer …

3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

3


1
Welche Beziehung besteht zwischen einer SVM und einem Scharnierverlust?
Mein Kollege und ich versuchen, uns mit dem Unterschied zwischen logistischer Regression und einer SVM auseinanderzusetzen. Offensichtlich optimieren sie verschiedene Zielfunktionen. Ist eine SVM so einfach wie zu sagen, dass sie ein diskriminierender Klassifikator ist, der einfach den Scharnierverlust optimiert? Oder ist es komplexer als das? Wie kommen die Unterstützungsvektoren …

1
Generieren Sie Vorhersagen, die orthogonal (nicht korreliert) zu einer bestimmten Variablen sind
Ich habe eine XMatrix, eine yVariable und eine andere Variable ORTHO_VAR. Ich muss die yVariable vorhersagen , wobei Xdie Vorhersagen aus diesem Modell orthogonal sein müssen, ORTHO_VARwährend sie so korreliert ywie möglich sind. Ich würde es vorziehen, wenn die Vorhersagen mit einer nicht parametrischen Methode wie erzeugt werden, xgboost.XGBRegressoraber ich …
8 correlation  machine-learning  dataset  logistic-regression  prediction  linear-regression  prediction  dummy-variables  neural-network  image-classification  python  k-nn  python  neural-network  neural-network  deep-learning  keras  tensorflow  image-classification  tensorflow  reinforcement-learning  policy-gradients  machine-learning  decision-trees  neural-network  overfitting  data-analysis  metric  python  scikit-learn  distance  scipy  machine-learning  python  scikit-learn  decision-trees  logistic-regression  keras  image-classification  implementation  machine-learning  python  scikit-learn  random-forest  decision-trees  machine-learning  feature-selection  feature-engineering  word2vec  word-embeddings  natural-language-process  scikit-learn  time-series  clustering  k-means  python  cross-validation  pyspark  statistics  cross-validation  multiclass-classification  evaluation  machine-learning  nlp  machine-translation  neural-network  deep-learning  keras  tensorflow  image-classification  machine-learning  python  similarity  distance  lstm  text  named-entity-recognition  machine-learning  keras  optimization  gan  learning-rate  neural-network  data-mining  dataset  databases  books  neural-network  rnn 

2
Coursera ML - Beeinflusst die Wahl des Optimierungsalgorithmus die Genauigkeit der logistischen Regression mehrerer Klassen?
Ich habe kürzlich Übung 3 von Andrew Ngs maschinellem Lernen auf Coursera mit Python abgeschlossen . Als ich die Teile 1.4 bis 1.4.1 der Übung zum ersten Mal absolvierte, hatte ich Schwierigkeiten sicherzustellen, dass mein trainiertes Modell die Genauigkeit aufweist, die den erwarteten 94,9% entspricht. Selbst nachdem ich debuggt und …

1
Warum gibt die logistische Regression in Spark und R unterschiedliche Modelle für dieselben Daten zurück?
Ich habe die logistischen Regressionsmodelle für R ( glm) und Spark ( LogisticRegressionWithLBFGS) mit einem Datensatz von 390 obs verglichen . von 14 Variablen. Die Ergebnisse sind im Achsenabschnitt und in den Gewichten völlig unterschiedlich. Wie kann man das erklären? Hier sind die Ergebnisse von Spark (LogisticRegressionWithLBFGS): model.intercept : 1.119830027739959 …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.