Als «data» getaggte Fragen

Fragen, die sich hauptsächlich mit der Verwaltung von Daten befassen, ohne sich auf die Vorverarbeitung oder Modellierung zu konzentrieren.

1
Warum ist xgboost so viel schneller als sklearn GradientBoostingClassifier?
Ich versuche, ein Steigungsverstärkungsmodell mit über 50.000 Beispielen und 100 numerischen Merkmalen zu trainieren. XGBClassifierBewältigt 500 Bäume innerhalb von 43 Sekunden auf meiner Maschine, während GradientBoostingClassifiernur 10 Bäume (!) in 1 Minute und 2 Sekunden bearbeitet werden :( Ich habe nicht versucht, 500 Bäume zu züchten, da dies Stunden dauern …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

1
Wie funktioniert der Parameter validation_split der Anpassungsfunktion von Keras?
Die Aufteilung der Validierung in Keras Sequential Model Fit-Funktionen ist unter https://keras.io/models/sequential/ wie folgt dokumentiert : validation_split: Float zwischen 0 und 1. Bruchteil der Trainingsdaten, die als Validierungsdaten verwendet werden sollen. Das Modell unterscheidet diesen Teil der Trainingsdaten, trainiert ihn nicht und bewertet den Verlust und alle Modellmetriken für diese …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
Ist Pandas jetzt schneller als data.table?
https://github.com/Rdatatable/data.table/wiki/Benchmarks-%3A-Grouping Die data.table-Benchmarks wurden seit 2014 nicht mehr aktualisiert. Ich habe gehört, dass sie Pandasjetzt schneller sind als data.table. Ist das wahr? Hat jemand irgendwelche Benchmarks gemacht? Ich habe Python noch nie benutzt, würde aber überlegen zu wechseln, ob ich pandasschlagen kann data.table?
15 python  r  pandas  data  data.table 



4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
Wie viele Daten reichen aus, um mein Modell für maschinelles Lernen zu trainieren?
Ich habe eine Weile an maschinellem Lernen und Bioinformatik gearbeitet und heute ein Gespräch mit einem Kollegen über die wichtigsten allgemeinen Fragen des Data Mining geführt. Mein Kollege (der Experte für maschinelles Lernen ist) sagte, dass seiner Meinung nach der wohl wichtigste praktische Aspekt des maschinellen Lernens darin besteht, zu …

2
Wie führe ich eine logistische Regression mit einer großen Anzahl von Funktionen durch?
Ich habe einen Datensatz mit 330 Stichproben und 27 Merkmalen für jede Stichprobe mit einem Binärklassenproblem für die logistische Regression. Gemäß der "Regel wenn zehn" benötige ich mindestens 10 Ereignisse für jedes Feature, um eingeschlossen zu werden. Ich habe jedoch einen unausgeglichenen Datensatz mit 20% positiver Klasse und 80% negativer …

3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

2
Wann sollte man eine lineare Regression oder eine Entscheidungsbaum- oder eine zufällige Waldregression wählen? [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 4 Jahren . Ich arbeite an einem Projekt und habe Schwierigkeiten …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 

4
Interpretieren des Entscheidungsbaums im Kontext von Feature-Wichtigkeiten
Ich versuche zu verstehen, wie man den Entscheidungsprozess eines mit sklearn erstellten Entscheidungsbaum-Klassifizierungsmodells vollständig versteht. Die beiden Hauptaspekte, die ich betrachte, sind eine grafische Darstellung des Baums und die Liste der Funktionsbedeutungen. Was ich nicht verstehe, ist, wie die Merkmalsbedeutung im Kontext des Baums bestimmt wird. Hier ist zum Beispiel …


3
Docker für Data Science
Ich habe kürzlich angefangen, Artikel über Docker zu lesen. In der Datenwissenschaft ist Docker für mich nützlich, weil: 1) Sie haben eine völlig andere Umgebung, die Sie vor Problemen mit Bibliotheken und Abhängigkeiten schützt. 2) Wenn Ihre Anwendung beispielsweise die Datenbank Ihres Unternehmens ändert, möchten Sie zunächst sicherstellen, dass der …
7 data 

6
Ist es ratsam, zwei Datensätze zu kombinieren?
Ich habe zwei Datensätze zur Herzfrequenz von Probanden, die an zwei verschiedenen Orten aufgezeichnet wurden (zwei verschiedene Kontinente, um genau zu sein). Die beiden Forschungsexperimente zielten darauf ab, die Emotionen der Probanden anhand der Veränderung ihrer Herzfrequenz im Laufe der Zeit zu ermitteln. Ich benutze maschinelles Lernen, um die Emotionen …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.