Als «nonlinear-regression» getaggte Fragen

Verwenden Sie dieses Tag nur für Regressionsmodelle, bei denen die Antwort eine nichtlineare Funktion der Parameter ist. Verwenden Sie dieses Tag nicht für die nichtlineare Datentransformation.

1
Regression nichtlinearer Mischeffekte in R
Überraschenderweise konnte ich mit Google keine Antwort auf die folgende Frage finden: Ich habe einige biologische Daten von mehreren Personen, die mit der Zeit ein grob sigmoides Wachstumsverhalten zeigen. Daher möchte ich es mit einem logistischen Standardwachstum modellieren P(t) = k*p0*exp(r*t) / (k+p0*(exp(r*t)-1)) wobei p0 der Startwert bei t = …

1
Wie minimiere ich die Restquadratsumme einer Exponentialanpassung?
Ich habe folgende Daten und möchte ein negatives exponentielles Wachstumsmodell hinzufügen: Days <- c( 1,5,12,16,22,27,36,43) Emissions <- c( 936.76, 1458.68, 1787.23, 1840.04, 1928.97, 1963.63, 1965.37, 1985.71) plot(Days, Emissions) fit <- nls(Emissions ~ a* (1-exp(-b*Days)), start = list(a = 2000, b = 0.55)) curve((y = 1882 * (1 - exp(-0.5108*x))), from …

3
Lineare Regression Was sagt uns die F-Statistik, das R-Quadrat und der Reststandardfehler?
Ich bin wirklich verwirrt über den Bedeutungsunterschied im Zusammenhang mit der linearen Regression der folgenden Begriffe: F-Statistik R im Quadrat Reststandardfehler Ich habe diesen Webstie gefunden der mir einen guten Einblick in die verschiedenen Begriffe der linearen Regression gegeben hat. Die oben genannten Begriffe sehen jedoch ziemlich ähnlich aus (soweit …

2
Vertrauensform und Vorhersageintervalle für nichtlineare Regression
Sollen die Konfidenz- und Vorhersagebänder einer nichtlinearen Regression symmetrisch zur Regressionslinie sein? Das heißt, sie nehmen nicht die Sanduhrform an, wie im Fall der Bänder für die lineare Regression. Warum das? Hier ist das fragliche Modell: F(x)=⎛⎝⎜⎜A−D1+(xC)B⎞⎠⎟⎟+DF(x)=(A−D1+(xC)B)+D F(x) = \left(\frac{A-D}{1 + \left(\frac x C\right)^B}\right) + D Hier ist die Abbildung: …

2
Lineare vs. nichtlineare Regression
Ich habe eine Menge von Werten und y, die theoretisch exponentiell zusammenhängen:xxxyyy y=axby=axby = ax^b Eine Möglichkeit, die Koeffizienten zu erhalten, besteht darin, natürliche Logarithmen auf beiden Seiten anzuwenden und ein lineares Modell zu erstellen: > fit <- lm(log(y)~log(x)) > a <- exp(fit$coefficients[1]) > b <- fit$coefficients[2] Ein anderer Weg, …

4
Unterscheidung zwischen linearem und nichtlinearem Modell
Ich habe einige Erklärungen zu den Eigenschaften von linearen und nichtlinearen Modellen gelesen, bin mir aber manchmal nicht sicher, ob es sich bei dem vorliegenden Modell um ein lineares oder ein nichtlineares Modell handelt. Ist beispielsweise das folgende Modell linear oder nichtlinear? yt=β0+β1B(L;θ)Xt+εtyt=β0+β1B(L;θ)Xt+εty_t=\beta_0 + \beta_1B(L;\theta)X_t+\varepsilon_t Mit: B(L;θ)=∑k=1Kb(k;θ)LkB(L;θ)=∑k=1Kb(k;θ)LkB(L;\theta)=\sum_{k=1}^{K}b(k;\theta)L^k LkXt=Xt−kLkXt=Xt−kL^kX_t=X_{t-k} Wobei eine …




3
Warum ist es wichtig, zwischen „linearer“ und „nichtlinearer“ Regression zu unterscheiden?
Welche Bedeutung hat die Unterscheidung zwischen linearen und nichtlinearen Modellen? Die Frage Nichtlineares vs. verallgemeinertes lineares Modell: Wie verweisen Sie auf logistische, Poisson usw. Regression? und ihre Antwort war eine äußerst hilfreiche Klärung der Linearität / Nichtlinearität verallgemeinerter linearer Modelle. Es scheint von entscheidender Bedeutung zu sein, lineare von nichtlinearen …

1
Berechnen Sie die log-Wahrscheinlichkeit „von Hand“ für die verallgemeinerte nichtlineare Regression der kleinsten Quadrate (nlme)
Ich versuche, die log-Wahrscheinlichkeit für eine verallgemeinerte nichtlineare Regression der kleinsten Quadrate für die Funktion f ( x ) = β 1 zu berechnenoptimiert durch dieFunktion im R-Paketunter Verwendung der Varianz-Kovarianz-Matrix, die durch Abstände auf einem phylogenetischen Baum unter Annahme einer Brownschen Bewegung (aus demPaket) erzeugt wird. Der folgende reproduzierbare …

4
Auswahl der Anfangswerte für die nichtlineare Anpassung der kleinsten Quadrate
Die Frage oben sagt alles. Grundsätzlich ist meine Frage nach einer generischen Anpassungsfunktion (die beliebig kompliziert sein kann), die in den Parametern, die ich abzuschätzen versuche, nichtlinear ist. Wie wählt man die Anfangswerte aus, um die Anpassung zu initialisieren? Ich versuche, nichtlineare kleinste Quadrate zu erstellen. Gibt es eine Strategie …

2
Können wir Bootstrap-Beispiele verwenden, die kleiner als das Originalmuster sind?
Ich möchte Bootstrapping verwenden, um Konfidenzintervalle für geschätzte Parameter aus einem Panel-Datensatz mit N = 250 Unternehmen und T = 50 Monaten zu schätzen. Die Schätzung von Parametern ist aufgrund der Verwendung der Kalman-Filterung und der komplexen nichtlinearen Schätzung rechenintensiv (wenige Tage Berechnung). Daher ist es rechnerisch nicht möglich, (mit …



Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.