Als «jacobian» getaggte Fragen

2
Angenommen, . Show
Wie lässt sich am einfachsten feststellen, dass die folgende Aussage zutrifft? Angenommen, . Zeige .Y1,…,Yn∼iidExp(1)Y1,…,Yn∼iidExp(1)Y_1, \dots, Y_n \overset{\text{iid}}{\sim} \text{Exp}(1)∑ni=1(Yi−Y(1))∼Gamma(n−1,1)∑i=1n(Yi−Y(1))∼Gamma(n−1,1)\sum_{i=1}^{n}(Y_i - Y_{(1)}) \sim \text{Gamma}(n-1, 1) Beachten Sie, dass .Y(1)=min1≤i≤nYiY(1)=min1≤i≤nYiY_{(1)} = \min\limits_{1 \leq i \leq n}Y_i Mit X∼Exp(β)X∼Exp(β)X \sim \text{Exp}(\beta) bedeutet dies, dass fX(x)=1βe−x/β⋅1{x>0}fX(x)=1βe−x/β⋅1{x>0}f_{X}(x) = \dfrac{1}{\beta}e^{-x/\beta} \cdot \mathbf{1}_{\{x > 0\}} . Es …

1
Herleitung der Änderung von Variablen einer Wahrscheinlichkeitsdichtefunktion?
In dem Buch Mustererkennung und maschinelles Lernen (Formel 1.27) gibt es Dabei istx=g(y),px(x)das PDF, das inBezug auf die Änderung der Variablenpy(y)entspricht.py(y)=px(x)∣∣∣dxdy∣∣∣=px(g(y))|g′(y)|py(y)=px(x)|dxdy|=px(g(y))|g′(y)|p_y(y)=p_x(x) \left | \frac{d x}{d y} \right |=p_x(g(y)) | g'(y) |x=g(y)x=g(y)x=g(y)px(x)px(x)p_x(x)py(y)py(y)p_y(y) In den Büchern heißt es, dass Beobachtungen, die in den Bereich , für kleine Werte von δ x in …

1
Wenn eine unabhängige Beta sind, ist show ebenfalls Beta
Hier ist ein Problem, das vor einigen Jahren in einer Semesterprüfung an unserer Universität aufgetreten ist und das ich nur schwer lösen kann. Wenn sind unabhängig Zufallsvariablen mit Dichten und jeweils dann zeigen , dass folgt .X1,X2X1,X2X_1,X_2ββ\betaβ(n1,n2)β(n1,n2)\beta(n_1,n_2)β(n1+12,n2)β(n1+12,n2)\beta(n_1+\dfrac{1}{2},n_2)X1X2−−−−−√X1X2\sqrt{X_1X_2}β(2n1,2n2)β(2n1,2n2)\beta(2n_1,2n_2) Ich habe die Jacobi-Methode verwendet, um zu erhalten, dass die Dichte von wie …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.