AIC steht für das Akaike Information Criterion, eine Technik, mit der das beste Modell aus einer Klasse von Modellen unter Verwendung einer bestraften Wahrscheinlichkeit ausgewählt wird. Ein kleinerer AIC impliziert ein besseres Modell.
Sowohl der AIC als auch der BIC sind Methoden zur Bewertung der Modellanpassung, die für die Anzahl der geschätzten Parameter bestraft werden. Wie ich es verstehe, bestraft BIC Modelle mehr für freie Parameter als AIC. Gibt es neben einer Präferenz, die auf der Stringenz der Kriterien basiert, andere Gründe, AIC …
Ich möchte einen Algorithmus zur automatischen Modellauswahl implementieren. Ich denke über eine schrittweise Regression nach, aber alles wird funktionieren (es muss jedoch auf linearen Regressionen basieren). Mein Problem ist, dass ich keine Methodik oder Open-Source-Implementierung finden kann (ich woke in Java). Die Methodik, die ich vorhabe, wäre ungefähr so: Berechnen …
Ich überprüfe gerade ein Manuskript, in dem die Autoren 5-6 logit-Regressionsmodelle mit AIC vergleichen. Einige Modelle haben jedoch Interaktionsterme ohne Berücksichtigung der einzelnen kovariaten Terme. Hat es jemals Sinn, dies zu tun? Zum Beispiel (nicht spezifisch für Logit-Modelle): M1: Y = X1 + X2 + X1*X2 M2: Y = X1 …
Bei der Beantwortung dieser Frage schlug John Christie vor, die Anpassung logistischer Regressionsmodelle durch Auswertung der Residuen zu bewerten. Ich kenne mich mit der Interpretation von Residuen in OLS aus. Sie sind im selben Maßstab wie die DV und sehr deutlich der Unterschied zwischen y und dem vom Modell vorhergesagten …
Auf P. 34 seiner PRNN Brian Ripley kommentiert: "Der AIC wurde von Akaike (1974) als 'An Information Criterion' bezeichnet, obwohl allgemein angenommen wird, dass der A für Akaike steht." Tatsächlich erklärt Akaike (1974, S. 719) dies bei der Einführung der AIC-Statistik "IC stands for information criterion and A is added …
Ich habe AIC und AICc berechnet, um zwei allgemeine lineare gemischte Modelle zu vergleichen. Die AICs sind positiv, wobei Modell 1 einen niedrigeren AIC als Modell 2 aufweist. Die Werte für AICc sind jedoch beide negativ (Modell 1 ist immer noch <Modell 2). Ist es gültig, negative AICc-Werte zu verwenden …
Ich habe hier einige Fragen darüber gesehen, was es in Laienbegriffen bedeutet, aber diese sind zu Laien für meinen Zweck hier. Ich versuche mathematisch zu verstehen, was der AIC-Score bedeutet. Gleichzeitig möchte ich keinen strengen Beweis, der mich die wichtigeren Punkte nicht erkennen lässt. Wenn dies zum Beispiel ein Kalkül …
Ich möchte eine logistische Regression mit der folgenden Binomialantwort und mit und als meinen Prädiktoren durchführen. X1X1X_1X2X2X_2 Ich kann die gleichen Daten wie Bernoulli-Antworten im folgenden Format präsentieren. Die logistischen Regressionsausgaben für diese beiden Datensätze sind größtenteils gleich. Die Abweichungsreste und der AIC sind unterschiedlich. (Der Unterschied zwischen der Nullabweichung …
Ich benutze normalerweise BIC, da ich verstehe, dass es Parsimonie stärker schätzt als AIC. Ich habe mich jetzt jedoch für einen umfassenderen Ansatz entschieden und möchte auch AIC verwenden. Ich weiß, dass Raftery (1995) gute Richtlinien für BIC-Unterschiede vorgelegt hat: 0-2 ist schwach, 2-4 ist ein positiver Beweis dafür, dass …
Ist es möglich, AIC- oder BIC-Werte für Lasso-Regressionsmodelle und andere regulierte Modelle zu berechnen, bei denen Parameter nur teilweise in die Gleichung eingehen? Wie bestimmt man die Freiheitsgrade? Ich verwende R, um Lasso-Regressionsmodelle mit der glmnet()Funktion aus dem glmnetPaket zu versehen, und möchte wissen, wie AIC- und BIC-Werte für ein …
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
Akaike Information Criterion (AIC) und die c-Statistik (Fläche unter der ROC-Kurve) sind zwei Messgrößen für die logistische Regression. Es fällt mir schwer zu erklären, was passiert, wenn die Ergebnisse der beiden Maßnahmen nicht konsistent sind. Ich denke, sie messen etwas unterschiedliche Aspekte der Modellanpassung, aber was sind diese spezifischen Aspekte? …
Ich verwende AIC (Akaikes Informationskriterium), um nichtlineare Modelle in R zu vergleichen. Ist es gültig, die AICs verschiedener Modelltypen zu vergleichen? Insbesondere vergleiche ich ein von glm angepasstes Modell mit einem von glmer (lme4) angepassten Ausdruck für zufällige Effekte. Wenn nein, gibt es eine Möglichkeit, einen solchen Vergleich durchzuführen? Oder …
In einer Frage an anderer Stelle auf dieser Website wurde in mehreren Antworten darauf hingewiesen, dass die AIC der LOO-Kreuzvalidierung und die BIC der K-fachen Kreuzvalidierung entspricht. Gibt es eine Möglichkeit, dies in R empirisch zu demonstrieren, sodass die mit LOO und K-fach verbundenen Techniken klargestellt werden und den AIC- …
Was genau sind die Voraussetzungen, die erfüllt sein müssen, damit der AIC-Modellvergleich funktioniert? Ich bin gerade auf diese Frage gekommen, als ich einen Vergleich so anstellte: > uu0 = lm(log(usili) ~ rok) > uu1 = lm(usili ~ rok) > AIC(uu0) [1] 3192.14 > AIC(uu1) [1] 14277.29 Auf diese Weise habe …
Ich habe aus einigen Gründen ein Problem damit, die Vorteile der Kennzeichnung eines Modellfaktors als zufällig zu betrachten. Für mich scheint es in fast allen Fällen die optimale Lösung zu sein, alle Faktoren als fest zu behandeln. Erstens ist die Unterscheidung zwischen fest und zufällig ziemlich willkürlich. Die übliche Erklärung …
Ich suche Beispiele für die Interpretation von AIC-Schätzungen (Akaike-Informationskriterium) und BIC-Schätzungen (Bayes-Informationskriterium). Kann ein negativer Unterschied zwischen BICs als hintere Gewinnchance eines Modells gegenüber dem anderen interpretiert werden? Wie kann ich das in Worte fassen? Zum Beispiel kann der BIC = -2 bedeuten, dass die Chancen des besseren Modells gegenüber …
Ich interessiere mich für die Modellauswahl in einer Zeitreiheneinstellung. Nehmen wir der Vollständigkeit halber an, ich möchte ein ARMA-Modell aus einem Pool von ARMA-Modellen mit unterschiedlichen Verzögerungsreihenfolgen auswählen. Die ultimative Absicht ist die Vorhersage . Die Modellauswahl kann über erfolgen Kreuzvalidierung, Verwendung von Informationskriterien (AIC, BIC), unter anderem Methoden. Rob …
Wie werden (lineare) Mischeffektmodelle normalerweise miteinander verglichen? Ich weiß, dass Likelihood-Ratio-Tests verwendet werden können, aber dies funktioniert nicht, wenn ein Modell nicht die richtige Teilmenge des anderen Modells ist. Ist die Schätzung der Modelle df immer einfach? Anzahl der Fixeffekte + Anzahl der geschätzten Varianzkomponenten? Ignorieren wir die Schätzungen für …
Ich bin ganz neu in dieser R-Sache, bin mir aber nicht sicher, welches Modell ich wählen soll. Ich habe eine schrittweise Vorwärtsregression durchgeführt , bei der jede Variable basierend auf dem niedrigsten AIC ausgewählt wurde. Ich habe mir 3 Modelle ausgedacht, bei denen ich nicht sicher bin, welches das "beste" …
In einem kleinen Datensatz ( ), mit dem ich arbeite, geben mir mehrere Variablen eine perfekte Vorhersage / Trennung . Ich benutze daher die logistische Regression von Firth , um das Problem zu lösen.n ≤ 100n∼100n\sim100 Wenn ich das beste Modell nach AIC oder BIC auswähle , sollte ich bei …
Bei der Berechnung von AIC AIC=2k−2lnLAIC=2k−2lnLAIC = 2k - 2 ln L k bedeutet "Anzahl der Parameter". Aber was zählt als Parameter? So zum Beispiel im Modell y=ax+by=ax+by = ax + b Werden a und b immer als Parameter gezählt? Was ist, wenn mir der Wert des Abschnitts egal ist, …
Sagen wir, wir müssen GLMMs mod1 <- glmer(y ~ x + A + (1|g), data = dat) mod2 <- glmer(y ~ x + B + (1|g), data = dat) Diese Modelle sind nicht im üblichen Sinne verschachtelt: a <- glmer(y ~ x + A + (1|g), data = dat) b …
Nachdem ich Galit Shmuelis "To Explain or to Predict" (2010) gelesen habe, wundere ich mich über einen offensichtlichen Widerspruch. Es gibt drei Räumlichkeiten, AIC versus BIC-basierte Modellauswahl (Ende S. 300 - Beginn S. 301): Einfach ausgedrückt, AIC sollte zur Auswahl eines Modells verwendet werden, das zur Vorhersage vorgesehen ist , …
Ich habe unzählige Beiträge auf dieser Site gelesen, die unglaublich gegen die schrittweise Auswahl von Variablen mit beliebigen Kriterien wie p-Werten, AIC, BIC usw. sind. Ich verstehe, warum diese Verfahren im Allgemeinen ziemlich schlecht für die Auswahl von Variablen sind. Gungs wahrscheinlich berühmter Post hier zeigt deutlich, warum; Letztendlich überprüfen …
Diese Frage ist ein Follow-up oder ein Versuch, mögliche Verwirrung in Bezug auf ein Thema zu beseitigen, das ich und viele andere aufgrund des Unterschieds zwischen AIC und BIC als etwas schwierig empfinde. In einer sehr netten Antwort von @ Dave Kellen zu diesem Thema ( /stats//a/767/30589 ) lesen wir: …
Das Wesentliche meiner Frage ist: Sei eine multivariate normale Zufallsvariable mit Mittelwert und Kovarianzmatrix . Sei , dh . Wie vergleiche ich den AIC eines Modells, das mit beobachteten Realisierungen von übereinstimmt, mit einem Modell, das mit beobachteten Realisierungen von ? μ Σ Z : = log ( Y ) …
(Diese Frage scheint für die Philosophy SE besser geeignet zu sein. Ich hoffe, dass Statistiker meine Missverständnisse über die Aussagen von Box und Shmueli klären können, daher veröffentliche ich sie hier.) George Box (von ARIMA) sagte: "Alle Modelle sind falsch, aber einige sind nützlich." Galit Shmueli argumentiert in ihrer berühmten …
Ich bin gerade auf das "Akaike-Informationskriterium" gestoßen und habe diese große Menge an Literatur zur Modellauswahl bemerkt (auch Dinge wie BIC scheinen zu existieren). Warum nutzen moderne Methoden des maschinellen Lernens diese Auswahlkriterien für BIC- und AIC-Modelle nicht?
Ich habe in den letzten 3 Jahren Statistiken aus vielen Büchern studiert und dank dieser Seite viel gelernt. Dennoch bleibt für mich eine grundlegende Frage offen. Es mag eine sehr einfache oder eine sehr schwierige Antwort geben, aber ich weiß, dass es ein tiefes Verständnis der Statistik erfordert. Bei der …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.