Scikit-learn ist ein Python-Modul, das ein einfaches und effizientes Tool für maschinelles Lernen, Data Mining und Datenanalyse umfasst. Es basiert auf NumPy, SciPy und Matplotlib. Es wird unter der 3-Klausel-BSD-Lizenz vertrieben.
Ich bin ein Neuling in der Datenwissenschaft und verstehe den Unterschied zwischen fitund fit_transformMethoden beim Scikit-Lernen nicht. Kann jemand einfach erklären, warum wir möglicherweise Daten transformieren müssen? Was bedeutet es, das Modell an die Trainingsdaten anzupassen und in Testdaten umzuwandeln? Bedeutet dies beispielsweise, dass Sie kategoriale Variablen in Zahlen umwandeln …
Ich erstelle seit einiger Zeit Modelle mit kategorialen Daten. In dieser Situation verwende ich standardmäßig die LabelEncoder-Funktion von scikit-learn, um diese Daten vor dem Erstellen eines Modells zu transformieren. Ich verstehe den Unterschied zwischen OHE, LabelEncoderund DictVectorizorin Hinblick darauf, was sie auf die Daten zu tun, aber was mir nicht …
Ich versuche, SVR mit Scikit Learn (Python) auf einem Trainingsdatensatz mit 595605 Zeilen und 5 Spalten (Features) und einem Testdatensatz mit 397070 Zeilen auszuführen. Die Daten wurden vorverarbeitet und reguliert. Ich kann die Testbeispiele erfolgreich ausführen. Wenn ich jedoch meinen Datensatz verwende und ihn länger als eine Stunde laufen lasse, …
Ich mache einige Probleme bei der Anwendung von Decision Tree / Random Forest. Ich versuche, ein Problem zu lösen, bei dem sowohl Zahlen als auch Zeichenfolgen (z. B. der Name des Landes) als Merkmale verwendet werden. Jetzt nimmt die Bibliothek, scikit-learn, nur Zahlen als Parameter, aber ich möchte die Zeichenfolgen …
Wie könnte ich mit Sklearn eine Datenmatrix und den entsprechenden Beschriftungsvektor zufällig in einen X_train, X_test, X_val, y_train, y_test, y_val aufteilen? Soweit ich weiß, sklearn.cross_validation.train_test_splitist nur in der Lage, in zwei, nicht in drei zu spalten ...
Ich arbeite an dem Problem mit zu vielen Funktionen und das Training meiner Modelle dauert viel zu lange. Ich habe einen Vorwärtsauswahlalgorithmus implementiert, um Features auszuwählen. Allerdings habe ich mich gefragt, ob Scikit-Learn einen Vorwärtsauswahl- / schrittweisen Regressionsalgorithmus hat.
Ich versuche, ein Steigungsverstärkungsmodell mit über 50.000 Beispielen und 100 numerischen Merkmalen zu trainieren. XGBClassifierBewältigt 500 Bäume innerhalb von 43 Sekunden auf meiner Maschine, während GradientBoostingClassifiernur 10 Bäume (!) in 1 Minute und 2 Sekunden bearbeitet werden :( Ich habe nicht versucht, 500 Bäume zu züchten, da dies Stunden dauern …
Ich folge diesem Beispiel auf der Website von scikit-learn, um eine Multi-Output-Klassifizierung mit einem Random Forest-Modell durchzuführen. from sklearn.datasets import make_classification from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.utils import shuffle import numpy as np X, y1 = make_classification(n_samples=5, n_features=5, n_informative=2, n_classes=2, random_state=1) y2 = shuffle(y1, random_state=1) Y …
Ich verwende eine standardmäßige lineare Regression mit Scikit-Learn in Python. Ich möchte jedoch erzwingen, dass die Gewichte für jedes Merkmal alle positiv sind (nicht negativ). Kann ich das auf irgendeine Weise erreichen? Ich habe in der Dokumentation gesucht, aber keinen Weg gefunden, dies zu erreichen. Ich verstehe, dass ich möglicherweise …
Eine Möglichkeit, eine logistische Regression zu trainieren, besteht in der Verwendung einer stochastischen Gradientenabnahme, zu der scikit-learn eine Schnittstelle bietet. Was ich möchte , ist zu tun , nehmen Sie einen Scikit-Learn des SGDClassifier und haben sie das gleiche wie eine logistische Regression punkten hier . Ich muss jedoch einige …
Ich bin ziemlich neu in diesem Bereich und kann nicht sagen, dass ich die theoretischen Konzepte dahinter vollständig verstanden habe. Ich versuche, die KL-Divergenz zwischen mehreren Punktelisten in Python zu berechnen. Ich benutze http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html , um dies zu versuchen. Das Problem, auf das ich stoße, ist, dass der zurückgegebene Wert …
Ziemlich neu in Python, aber ich baue mein erstes RF-Modell basierend auf einigen Klassifizierungsdaten auf. Ich habe alle Bezeichnungen in Int64-numerische Daten konvertiert und als Numpy-Array in X und Y geladen. Beim Versuch, die Modelle zu trainieren, tritt jedoch ein Fehler auf. So sehen meine Arrays aus: >>> X = …
Als ich über das Verwenden las StandardScaler, sagten die meisten Empfehlungen, dass Sie verwenden sollten, StandardScaler bevor Sie die Daten in Zug / Test aufteilen, aber als ich einige der online veröffentlichten Codes überprüfte (mit sklearn), gab es zwei Hauptverwendungen. 1- Mit StandardScalerauf alle Daten. Z.B from sklearn.preprocessing import StandardScaler …
Nachdem ich ein Buch über ML durchgesehen hatte, ging ich die offizielle Dokumentation von scikit-learn learn durch und stieß auf Folgendes: In der Dokumentation wird darüber berichtet, sklearn.preprocessing.OrdinalEncoder()während es in dem Buch, über das es gegeben wurde sklearn.preprocessing.LabelEncoder(), für mich gleich aussah, als ich ihre Funktionalität überprüfte. Kann mir bitte …
Ich baue mit sklearn (LogisticRegression) eine multinomiale logistische Regression auf. Wie kann ich dann einen p-Wert und ein sicheres Intervall für mein Modell erhalten? Es scheint nur, dass sklearn nur den Koeffizienten und den Achsenabschnitt liefert. Vielen Dank.
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.