Als «scikit-learn» getaggte Fragen

Scikit-learn ist ein Python-Modul, das ein einfaches und effizientes Tool für maschinelles Lernen, Data Mining und Datenanalyse umfasst. Es basiert auf NumPy, SciPy und Matplotlib. Es wird unter der 3-Klausel-BSD-Lizenz vertrieben.

2
Können Sie den Unterschied zwischen SVC und LinearSVC in scikit-learn erklären?
Ich habe kürzlich angefangen zu lernen, mit sklearnetwas zu arbeiten und bin gerade auf dieses merkwürdige Ergebnis gestoßen. Ich habe den digitsverfügbaren Datensatz verwendet sklearn, um verschiedene Modelle und Schätzmethoden auszuprobieren. Als ich ein Support Vector Machine-Modell mit den Daten getestet habe, stellte ich fest, dass es zwei verschiedene Klassen …
19 svm  scikit-learn 

1
Wie gehe ich mit String-Labels in der Mehrklassenklassifikation mit Keras um?
Ich bin Neuling in maschinellem Lernen und Keras und arbeite jetzt an einem Problem der Klassifizierung von Bildern mit Keras. Die Eingabe ist Bild markiert. Nach einer gewissen Vorverarbeitung werden die Trainingsdaten in der Python-Liste wie folgt dargestellt: [["dog", "path/to/dog/imageX.jpg"],["cat", "path/to/cat/imageX.jpg"], ["bird", "path/to/cat/imageX.jpg"]] Die Klassenbezeichnungen lauten "Hund", "Katze" und "Vogel". …

4
Verbessern Sie die Geschwindigkeit der Implementierung von t-sne in Python für große Datenmengen
Ich würde gerne eine Dimensionsreduktion für fast 1 Million Vektoren mit jeweils 200 Dimensionen durchführen ( doc2vec). Ich verwende dafür die TSNEImplementierung aus dem sklearn.manifoldModul und das Hauptproblem ist die zeitliche Komplexität. Trotzdem method = barnes_hutist die Rechengeschwindigkeit immer noch gering. Irgendwann geht ihm sogar der Speicher aus. Ich lasse …

1
Algorithmen für das Textclustering
Ich habe ein Problem damit, eine große Menge von Sätzen nach ihrer Bedeutung in Gruppen zusammenzufassen. Dies ähnelt einem Problem, wenn Sie viele Sätze haben und diese nach ihrer Bedeutung gruppieren möchten. Welche Algorithmen werden dazu vorgeschlagen? Ich kenne die Anzahl der Cluster im Voraus nicht (und da weitere Daten …

5
Beim maschinellen Lernen werden spärliche und dichte Daten zusammengeführt, um die Leistung zu verbessern
Ich habe spärliche Merkmale, die prädiktiv sind, und ich habe einige dichte Merkmale, die auch prädiktiv sind. Ich muss diese Funktionen kombinieren, um die Gesamtleistung des Klassifikators zu verbessern. Wenn ich nun versuche, diese Merkmale zu kombinieren, dominieren die dichten Merkmale tendenziell stärker als die spärlichen Merkmale, wodurch sich die …


6
Was ist der Grund für die Protokolltransformation weniger kontinuierlicher Variablen?
Ich habe ein Klassifizierungsproblem gemacht und den Code und die Tutorials vieler Leute gelesen. Eine Sache, die mir aufgefallen ist, ist, dass viele Leute nehmen np.logoder logvon stetigen Variablen wie loan_amountoder applicant_incomeusw. Ich möchte nur den Grund dahinter verstehen. Hilft es, die Genauigkeit unserer Modellvorhersage zu verbessern? Ist es obligatorisch? …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

5
Satzähnlichkeitsvorhersage
Ich möchte das folgende Problem lösen: Ich habe eine Reihe von Sätzen als Datensatz, und ich möchte in der Lage sein, einen neuen Satz einzugeben und den Satz zu finden, der dem neuen Satz im Datensatz am ähnlichsten ist. Ein Beispiel würde so aussehen: Neuer Satz: " I opened a …

3
Wie kann ich die Korrelation zwischen Features und Zielvariable überprüfen?
Ich versuche, ein RegressionModell zu erstellen , und suche nach einer Möglichkeit, um zu überprüfen, ob eine Korrelation zwischen Features und Zielvariablen besteht. Dies ist meine Probe dataset Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome\ 0 LP001002 Male No 0 Graduate No 5849 1 LP001003 Male Yes 1 Graduate No …

1
RandomForestClassifier OOB-Bewertungsmethode
Wird die zufällige Gesamtstrukturimplementierung in scikit-learn unter Verwendung der mittleren Genauigkeit als Bewertungsmethode zum Schätzen des Generalisierungsfehlers mit Out-of-Bag-Stichproben verwendet? Dies wird in der Dokumentation nicht erwähnt, aber die score () -Methode gibt die mittlere Genauigkeit an. Ich habe einen stark unausgeglichenen Datensatz und verwende AUC of ROC als Scoring-Metrik …

2
Wie funktioniert SelectKBest?
Ich schaue mir dieses Tutorial an: https://www.dataquest.io/mission/75/improving-your-submission In Abschnitt 8, in dem die besten Funktionen gefunden werden, wird der folgende Code angezeigt. import numpy as np from sklearn.feature_selection import SelectKBest, f_classif predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked", "FamilySize", "Title", "FamilyId"] # Perform feature selection selector = SelectKBest(f_classif, …

1
Merkmalsbedeutung mit kategorialen Merkmalen mit hoher Kardinalität für die Regression (numerisch abhängige Variable)
Ich habe versucht, Feature-Wichtigkeiten aus zufälligen Wäldern zu verwenden, um eine empirische Feature-Auswahl für ein Regressionsproblem durchzuführen, bei dem alle Features kategorisch sind und viele von ihnen viele Ebenen haben (in der Größenordnung von 100-1000). Da bei der One-Hot-Codierung für jede Ebene eine Dummy-Variable erstellt wird, gelten die Feature-Wichtigkeiten für …


1
Feature-Auswahl mithilfe von Feature-Wichtigkeiten in zufälligen Gesamtstrukturen mit Scikit-Learn
Ich habe die Feature-Wichtigkeiten in zufälligen Wäldern mit Scikit-Learn aufgezeichnet . Wie kann ich die Plotinformationen zum Entfernen von Features verwenden, um die Vorhersage mithilfe zufälliger Gesamtstrukturen zu verbessern? Dh wie kann man anhand der Plotinformationen erkennen, ob ein Feature nutzlos ist oder die Leistung der zufälligen Gesamtstrukturen noch schlimmer …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.