Als «loss-function» getaggte Fragen

5
Warum verwenden Kostenfunktionen den quadratischen Fehler?
Ich fange gerade erst mit maschinellem Lernen an und beschäftige mich bisher mit linearer Regression über eine Variable. Ich habe gelernt, dass es eine Hypothese gibt: hθ(x)=θ0+θ1xhθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1x Um gute Werte für die Parameter herauszufinden und wir den Unterschied zwischen dem berechneten Ergebnis und dem tatsächlichen Ergebnis unserer Testdaten minimieren möchten. …

4
Intuitive Erklärung des Verlusts durch Noise Contrastive Estimation (NCE)?
Ich habe über NCE (eine Form der Stichprobenauswahl) aus diesen beiden Quellen gelesen: Tensorflow-Zuschreibung Original Papier Kann mir jemand bei Folgendem helfen: Eine einfache Erklärung der Funktionsweise von NCE (Ich fand es schwierig, das oben Genannte zu analysieren und zu verstehen. Etwas Intuitives, das zur dort vorgestellten Mathematik führt, wäre …

1
Warum ist xgboost so viel schneller als sklearn GradientBoostingClassifier?
Ich versuche, ein Steigungsverstärkungsmodell mit über 50.000 Beispielen und 100 numerischen Merkmalen zu trainieren. XGBClassifierBewältigt 500 Bäume innerhalb von 43 Sekunden auf meiner Maschine, während GradientBoostingClassifiernur 10 Bäume (!) in 1 Minute und 2 Sekunden bearbeitet werden :( Ich habe nicht versucht, 500 Bäume zu züchten, da dies Stunden dauern …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 



3
Tensorflow-Anpassung der Kostenfunktion für unausgeglichene Daten
Ich habe ein Klassifizierungsproblem mit stark unausgeglichenen Daten. Ich habe gelesen, dass Über- und Unterabtastung sowie die Änderung der Kosten für unterrepräsentierte kategoriale Ausgaben zu einer besseren Anpassung führen. Bevor dies durchgeführt wurde, kategorisierte Tensorflow jede Eingabe als Mehrheitsgruppe (und gewann eine Genauigkeit von über 90%, so bedeutungslos das auch …

3
Beziehung zwischen Faltung in Mathematik und CNN
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

2
Validierung mit großen Schwankungen. Was könnte die Ursache sein?
Ich trainiere ein CNN für ein 3-Klassen-Bildklassifizierungsproblem. Mein Trainingsverlust nahm reibungslos ab, was das erwartete Verhalten ist. Mein Validierungsverlust zeigt jedoch große Schwankungen. Ist dies etwas, worüber ich mir Sorgen machen sollte, oder sollte ich einfach das Modell auswählen, das bei meinem Leistungsmaß (Genauigkeit) am besten abschneidet? Zusätzliche Informationen: Ich …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.