Als «r» getaggte Fragen

Verwenden Sie dieses Tag für jede * themenbezogene * Frage, bei der (a) "R" entweder als kritischer Teil der Frage oder als erwartete Antwort enthält, und (b) nicht * nur * die Verwendung von "R" betrifft.



1
Logarithmisch verknüpftes Gamma-GLM vs. logarithmisch verknüpftes Gaußsches GLM vs. logarithmisch transformiertes LM
Aus meinen Ergebnissen geht hervor, dass GLM Gamma die meisten Annahmen erfüllt, aber ist es eine lohnende Verbesserung gegenüber dem logarithmisch transformierten LM? Die meiste Literatur, die ich gefunden habe, befasst sich mit Poisson- oder Binomial-GLMs. Ich fand den Artikel EVALUIERUNG VON GENERALISIERTEN LINEAREN MODELLANNAHMEN MIT RANDOMISIERUNG sehr nützlich, aber …

4
In R, wie der p-Wert für die Fläche unter ROC berechnet wird
Ich habe Mühe, einen Weg zu finden, um den p-Wert für das Gebiet unter einer Empfängeroperatorcharakteristik (ROC) zu berechnen. Ich habe eine kontinuierliche Variable und ein diagnostisches Testergebnis. Ich möchte sehen, ob AUROC statistisch signifikant ist. Ich habe viele Pakete gefunden, die sich mit ROC-Kurven befassen: pROC, ROCR, caTools, verification, …
12 r  p-value  roc 

1
Verwirrung um lmer und p-Werte: Wie vergleichen sich p-Werte aus dem memisc-Paket mit denen aus der MCMC?
Ich hatte den Eindruck, dass die Funktion lmer()im lme4Paket keine p-Werte erzeugt (siehe lmer, p-Werte und so weiter) ). Ich habe stattdessen MCMC-generierte p-Werte wie folgt verwendet: Signifikanter Effekt im lme4gemischten Modell und diese Frage: In der Ausgabe von lmer()im lm4Paket in können keine p-Werte gefunden werdenR . Vor kurzem …



1
Kriterien für die Auswahl des „besten“ Modells in einem Hidden-Markov-Modell
Ich habe einen Zeitreihendatensatz, an den ich ein Hidden Markov Model (HMM) anpasse, um die Anzahl der latenten Zustände in den Daten abzuschätzen. Mein Pseudocode dafür ist der folgende: for( i in 2 : max_number_of_states ){ ... calculate HMM with i states ... optimal_number_of_states = "model with smallest BIC" ... …

2
Mischmodell mit 1 Beobachtung pro Level
Ich rüste glmereinige Geschäftsdaten mit einem Zufallseffektmodell aus . Ziel ist es, die Vertriebsleistung nach Händlern unter Berücksichtigung regionaler Unterschiede zu analysieren. Ich habe folgende Variablen: distcode: Distributor ID, mit ca. 800 Ebenen region: Geografische ID der obersten Ebene (Norden, Süden, Osten, Westen) zone: Geographie auf mittlerer Ebene region, insgesamt …

1
Erste Schritte zur Vorhersage finanzieller Zeitreihen durch maschinelles Lernen
Ich versuche zu verstehen, wie man maschinelles Lernen eins oder mehr Schritte in die Zukunft voraussagt. Ich habe eine finanzielle Zeitserie mit einigen beschreibenden Daten und möchte ein Modell bilden und dann das Modell verwenden, um n-Schritte vorauszusagen. Was ich bisher gemacht habe, ist: getSymbols("GOOG") GOOG$sma <- SMA(Cl(GOOG)) GOOG$range <- …

2
Wie teste ich in Poisson GLMM mit lmer () in R auf Überdispersion?
Ich habe folgendes Modell: > model1<-lmer(aph.remain~sMFS1+sAG1+sSHDI1+sbare+season+crop +(1|landscape),family=poisson) ... und das ist die Zusammenfassung. > summary(model1) Generalized linear mixed model fit by the Laplace approximation Formula: aph.remain ~ sMFS1 + sAG1 + sSHDI1 + sbare + season + crop + (1 | landscape) AIC BIC logLik deviance 4057 4088 -2019 4039 …




1
Wie kann man aus Gebrechlichkeitsmodellen vorhergesagte Überlebenskurven erstellen (mit R coxph)?
Ich möchte die vorhergesagte Überlebensfunktion für ein proportionales Cox-Gefährdungsmodell mit fragilen Begriffen berechnen [unter Verwendung des Überlebenspakets]. Es scheint, dass die vorhergesagte Überlebensfunktion nicht berechnet werden kann, wenn sich Gebrechlichkeitsterme im Modell befinden. ## Example require(survival) data(rats) ## Create fake weight set.seed(90989) rats$weight<-runif(nrow(rats),0.2,0.9) ## Cox model with gamma frailty on …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.