Für statistische Themen, bei denen Linearität angenommen wird, z. B. lineare Regression oder lineare gemischte Modelle, oder für die Diskussion der linearen Algebra in der Statistik.
PCA wird jedoch als lineares Verfahren angesehen: PCA(X)≠PCA(X1)+PCA(X2)+…+PCA(Xn),PCA(X)≠PCA(X1)+PCA(X2)+…+PCA(Xn),\mathrm{PCA}(X)\neq \mathrm{PCA}(X_1)+\mathrm{PCA}(X_2)+\ldots+\mathrm{PCA}(X_n), Dabei ist . Dies bedeutet, dass die von den PCAs auf den Datenmatrizen erhaltenen Eigenvektoren sich nicht zu den von der PCA auf der Summe der Datenmatrizen erhaltenen Eigenvektoren summieren . Aber ist die Definition einer linearen Funktion :X i X …
Entscheidungsstumpf ist ein Entscheidungsbaum mit nur einer Teilung. Es kann auch als stückweise Funktion geschrieben werden. Angenommen, ist ein Vektor und ist die erste Komponente von . Bei der Regressionseinstellung kann es sich um einen Entscheidungsstumpf handelnx 1 xxxxx1x1x_1xxx f( x ) = { 35x1≤ 2x1> 2f(x)={3x1≤25x1>2f(x)= \begin{cases} 3& x_1\leq …
Ich benutze multiple lineare Regression, um Beziehungen zwischen Y und X1, X2 zu beschreiben. Aus der Theorie habe ich verstanden, dass multiple Regression lineare Beziehungen zwischen Y und jedem von X (Y und X1, Y und X2) annimmt. Ich verwende keine Transformation von X. Also bekam ich das Modell mit …
Für ein lineares Modell bietet die OLS-Lösung den besten linearen unverzerrten Schätzer für die Parameter. Natürlich können wir eine Tendenz für eine geringere Varianz eintauschen, z. B. eine Kammregression. Aber meine Frage bezieht sich darauf, keine Vorurteile zu haben. Gibt es andere Schätzer, die etwas gebräuchlich sind, aber eine höhere …
Meine Frage ist sehr einfach: Warum wählen wir Normal als Verteilung, der der Fehlerterm bei der Annahme der linearen Regression folgt? Warum wählen wir nicht andere wie Uniform, t oder was auch immer?
Angenommen, wir haben die Eingabe- (Prädiktor) und Ausgabedatenpunkte (Antwortdatenpunkte) A, B, C, D, E, und wir möchten eine Linie durch die Punkte einpassen. Dies ist ein einfaches Problem, um die Frage zu veranschaulichen, kann aber auch auf höhere Dimensionen ausgedehnt werden. Problemstellung Die derzeit beste Anpassung oder Hypothese wird durch …
Ich verstehe das so, dass das Modell einzelne Datenpunkte schlecht vorhersagt, aber einen festen Trend festgestellt hat (z. B. steigt y, wenn x steigt).
Warum haben lineare Regression und verallgemeinertes Modell inkonsistente Annahmen? Bei der linearen Regression nehmen wir an, dass der Rest von Gauß stammt Bei einer anderen Regression (logistische Regression, Gift-Regression) gehen wir davon aus, dass die Reaktion von einer gewissen Verteilung ausgeht (Binomial, Poission usw.). Warum nehmen Sie manchmal Rest- und …
Ich bin wirklich verwirrt über den Bedeutungsunterschied im Zusammenhang mit der linearen Regression der folgenden Begriffe: F-Statistik R im Quadrat Reststandardfehler Ich habe diesen Webstie gefunden der mir einen guten Einblick in die verschiedenen Begriffe der linearen Regression gegeben hat. Die oben genannten Begriffe sehen jedoch ziemlich ähnlich aus (soweit …
Ich weiß, dass bei der linearen Regression die Antwortvariable stetig sein muss, aber warum ist das so? Ich kann nichts online finden, was erklärt, warum ich keine diskreten Daten für die Antwortvariable verwenden kann.
Wenig Hintergrund Ich arbeite an der Interpretation der Regressionsanalyse, aber ich bin sehr verwirrt über die Bedeutung von r, r im Quadrat und der restlichen Standardabweichung. Ich kenne die Definitionen: Charakterisierungen r misst die Stärke und Richtung einer linearen Beziehung zwischen zwei Variablen in einem Streudiagramm Das R-Quadrat ist ein …
Geschlossen . Diese Frage ist meinungsbasiert . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage, damit sie mit Fakten und Zitaten beantwortet werden kann, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 2 Jahren . Ich bin derzeit in einer linearen Regressionsklasse, kann aber …
Ich lerne die lineare Regression mithilfe der Einführung in die lineare Regressionsanalyse von Montgomery, Peck und Vining . Ich möchte ein Datenanalyseprojekt auswählen. Ich habe den naiven Gedanken, dass eine lineare Regression nur dann geeignet ist, wenn man vermutet, dass es lineare funktionale Beziehungen zwischen erklärenden Variablen und der Antwortvariablen …
Die Frage ist einfach: Ist es angemessen, eine lineare Regression zu verwenden, wenn Y begrenzt und diskret ist (z. B. die Testergebnisse 1 bis 100, einige vordefinierte Rangfolgen 1 bis 17)? Ist es in diesem Fall "nicht gut", eine lineare Regression zu verwenden, oder ist es völlig falsch, sie zu …
Ich arbeite an einem sehr großen linearen Regressionsproblem, dessen Daten so groß sind, dass sie auf einem Cluster von Computern gespeichert werden müssen. Es ist viel zu groß, um alle Samples im Speicher einer einzelnen Maschine (sogar auf der Festplatte) zusammenzufassen. Um diese Daten zu regressieren, denke ich über einen …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.