Bei einer Zufallsvariablen die sich aus einer parametrisierten Verteilung F (X; θ) ergibt, ist die Wahrscheinlichkeit als die Wahrscheinlichkeit beobachteter Daten als Funktion von θ definiert: \ text {L} (θ) = \ text {P} (θ) ; X = x)X.F.( X.;; θ )θ :L( θ )=P( θ ;X.= x )
Betrachten Sie ein Modell mit einem interessierenden Parameter. θθ\thetaund sein Punktschätzer, θ^θ^\hat\theta. Nehmen Sie der Einfachheit halber an θ^∼N(θ,σ2/n)θ^∼N(θ,σ2/n)\hat\theta\sim N(\theta,\sigma^2/n)(In zahlreichen Fällen könnte dies asymptotisch gerechtfertigt sein). Es gibt zwei Möglichkeiten, ein Intervall zu erstellen, das so kurz wie möglich ist(1−α)(1−α)(1-\alpha) Level-Konfidenzintervall. Für jeden wahren Wert θθ\thetaIch möchte das kürzestmögliche …
Ich bin ein Statistikstudent. Ich versuche, die klassischen und objektiven Definitionen der Wahrscheinlichkeit zu verstehen und wie sie mit der frequentistischen und bayesianischen Folgerung zusammenhängen. Mir ist nicht klar, warum die klassische Wahrscheinlichkeit mit der frequentistischen Inferenz gepaart ist und warum die Bayes'sche Inferenz mit der subjektiven Wahrscheinlichkeit gepaart ist. …
Ich versuche zu verstehen, wie Menschen die Wahrscheinlichkeit für eine einfache lineare Regression ableiten. Nehmen wir an, wir haben nur ein Merkmal x und das Ergebnis y. Ich bezweifle nicht den Ausdruck mit der normalen Dichte selbst und ich bezweifle auch nicht, dass man das Produkt aufgrund der Unabhängigkeit in …
Ich leite die Wahrscheinlichkeit einer logistischen Regression ab. Ich habe zwei verschiedene Versionen gesehen: f(y|β)=∏i=1Nniyi!(ni−yi)!πyii(1−πi)ni−yi(1)(1)f(y|β)=∏i=1Nniyi!(ni−yi)!πiyi(1−πi)ni−yi\begin{equation} f(y|\beta)={\displaystyle \prod_{i=1}^{N} \frac{n_i} {y_i!(n_i-y_i)!}} \pi_{i}^{y_i}(1-\pi_i)^{n_i - y_i} \tag 1 \end{equation} Oder dieses L(β0,β1)=∏i=1Np(xi)yi(1−p(xi))1−yi(2)(2)L(β0,β1)=∏i=1Np(xi)yi(1−p(xi))1−yi\begin{equation} L(\beta_0,\beta_1)= \displaystyle \prod_{i=1}^{N}p(x_i)^{y_i}(1-p(x_i))^{1-y_i} \tag 2 \end{equation} Warum gibt es in Gleichung 1 ?niyi!(ni−yi)!niyi!(ni−yi)!\frac{n_i} {y_i!(n_i-y_i)!} Quellen: Erstens: https://czep.net/stat/mlelr.pdf (Seite 3, Äqu. 2) Zweitens: …
Die Fisher-Informationen werden auf zwei äquivalente Arten definiert: als Varianz der Steigung von und als Negativ der erwarteten Krümmung von . Da ersteres immer positiv ist, würde dies bedeuten, dass die Krümmung der Log-Liklihood-Funktion überall negativ ist. Das scheint plausibel zu mir, da jede Verteilung , dass ich gesehen habe …
Wenn wir stochastische Regressoren haben, zeichnen wir zufällige Paare für eine Gruppe von , der sogenannten Zufallsstichprobe, aus einer festen, aber unbekannten Wahrscheinlichkeitsverteilung . Theoretisch erlaubt uns die Zufallsstichprobe, einige Parameter der Verteilung kennenzulernen oder abzuschätzen .(yich,x⃗ ich)(yi,x→i)(y_i,\vec{x}_i)ichii( y,x⃗ )(y,x→)(y,\vec{x})( y,x⃗ )(y,x→)(y,\vec{x}) Wenn wir feste Regressoren haben, können wir theoretisch …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.