Scikit-learn ist ein Python-Modul, das ein einfaches und effizientes Tool für maschinelles Lernen, Data Mining und Datenanalyse umfasst. Es basiert auf NumPy, SciPy und Matplotlib. Es wird unter der 3-Klausel-BSD-Lizenz vertrieben.
Eine Übersicht über den Hyperparameter-Optimierungsprozess in scikit-learn finden Sie hier . Eine umfassende Rastersuche findet den optimalen Satz von Hyperparametern für ein Modell. Der Nachteil ist, dass die umfassende Rastersuche langsam ist. Die zufällige Suche ist schneller als die Rastersuche, weist jedoch eine unnötig hohe Varianz auf. Es gibt auch …
Ich habe den Klassifikator analysiert, der mithilfe eines Entscheidungsbaums erstellt wurde. Im Entscheidungsbaum von scikit gibt es einen Optimierungsparameter namens max_depth . Entspricht dies dem Beschneiden eines Entscheidungsbaums? Wenn nicht, wie könnte ich einen Entscheidungsbaum mit Scikit beschneiden? dt_ap = tree.DecisionTreeClassifier(random_state=1, max_depth=13) boosted_dt = AdaBoostClassifier(dt_ap, random_state=1) boosted_dt.fit(X_train, Y_train)
Ich habe die Erklärung der Faltung gelesen und verstehe sie bis zu einem gewissen Grad. Kann mir jemand helfen zu verstehen, wie diese Operation mit der Faltung in Faltungs-Neuronalen Netzen zusammenhängt? Ist eine filterähnliche Funktion, gdie Gewicht anwendet?
Ich habe zwei Tensoren a:[batch_size, dim] b:[batch_size, dim]. Ich möchte inneres Produkt für jedes Paar in der Charge machen c:[batch_size, 1], wo erzeugen c[i,0]=a[i,:].T*b[i,:]. Wie?
Ich arbeite an einer Textklassifizierung mit 39 Kategorien / Klassen und 8,5 Millionen Datensätzen. (In Zukunft werden Daten und Kategorien zunehmen). Struktur oder Format meiner Daten ist wie folgt. ---------------------------------------------------------------------------------------- | product_title | Key_value_pairs | taxonomy_id | ---------------------------------------------------------------------------------------- Samsung S7 Edge | Color:black,Display Size:5.5 inch,Internal | 211 Storage:128 GB, RAM:4 …
Ich versuche zu verstehen, wie man den Entscheidungsprozess eines mit sklearn erstellten Entscheidungsbaum-Klassifizierungsmodells vollständig versteht. Die beiden Hauptaspekte, die ich betrachte, sind eine grafische Darstellung des Baums und die Liste der Funktionsbedeutungen. Was ich nicht verstehe, ist, wie die Merkmalsbedeutung im Kontext des Baums bestimmt wird. Hier ist zum Beispiel …
Ich habe ein Vorhersagemodell mit Scikit Learn in Python (Random Forest Regressor) trainiert und möchte die Gewichte der einzelnen Features irgendwie extrahieren, um ein Excel-Tool für die manuelle Vorhersage zu erstellen. Das einzige, was ich gefunden habe, ist das, model.feature_importances_aber es hilft nicht. Gibt es eine Möglichkeit, dies zu erreichen? …
Meine Frage ist dreifach Im Kontext von "Kernelized" unterstützen Vektormaschinen Ist die Auswahl von Variablen / Merkmalen wünschenswert - insbesondere, da wir den Parameter C regulieren, um eine Überanpassung zu verhindern, und das Hauptmotiv für die Einführung von Kerneln in eine SVM darin besteht, die Dimensionalität des Problems zu erhöhen. …
Ich bin neu im Bereich des maschinellen Lernens, habe aber meinen Teil zur Signalverarbeitung beigetragen. Bitte lassen Sie mich wissen, wenn diese Frage falsch beschriftet wurde. Ich habe zweidimensionale Daten, die durch mindestens drei Variablen definiert sind, wobei ein stark nichtlineares Modell viel zu kompliziert ist, um es zu simulieren. …
Ich habe Trainingsdaten, die mit Binärwerten gekennzeichnet sind. Ich habe auch das Vertrauen jedes dieser Etiketten gesammelt, dh 0,8 Vertrauen würde bedeuten, dass 80% der menschlichen Etikettierer diesem Etikett zustimmen. Ist es möglich, diese Vertrauensdaten zu verwenden, um die Genauigkeit meines Klassifikators zu verbessern? Würde folgendes funktionieren? 1a) Wenn das …
Experten auf meinem Gebiet sind in der Lage , die Wahrscheinlichkeit eines Ereignisses (binäre Spitze in Gelb) 30 Minuten vor seinem Auftreten vorherzusagen . Die Frequenz beträgt hier 1 Sek., Diese Ansicht repräsentiert Daten im Wert von einigen Stunden. Ich habe schwarz eingekreist, wo "böswilliges" Muster sein sollte . Wechselwirkungen …
Meine Daten enthalten binäre (numerische) und nominelle / kategoriale Umfrageantworten. Alle Antworten sind diskret und auf individueller Ebene. Die Daten haben eine Form (n = 7219, p = 105). Paar Dinge: Ich versuche, eine Clustering-Technik mit einem Ähnlichkeitsmaß zu identifizieren, das für kategoriale und numerische Binärdaten funktioniert. Es gibt Techniken …
Ich habe ein Klassenungleichgewicht im Verhältnis 1:15, dh eine sehr niedrige Ereignisrate. Um die Abstimmungsparameter von GBM in Scikit Learn auszuwählen, möchte ich Kappa anstelle der F1-Punktzahl verwenden. Mein Verständnis ist, dass Kappa eine bessere Metrik als die F1-Punktzahl für das Klassenungleichgewicht ist. Aber ich konnte Kappa als Evaluierungsmetrik in …
Als ich die Anzahl der Bäume erhöhe in scikit lernen ist GradientBoostingRegressor, erhalte ich negative Prognosen, auch wenn es in meiner Ausbildung oder Testsatz keine negativen Werte sind. Ich habe ungefähr 10 Funktionen, von denen die meisten binär sind. Einige der Parameter, die ich eingestellt habe, waren: die Anzahl der …
Wenn ich das richtig verstehe, kann mir Nested-CV dabei helfen, zu bewerten, welcher Modell- und Hyperparameter-Optimierungsprozess am besten ist. Die innere Schleife ( GridSearchCV) findet die besten Hyperparameter, und die äußere Schleife ( cross_val_score) wertet den Algorithmus zur Optimierung der Hyperparameter aus. Ich wähle dann aus der äußeren Schleife aus, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.