Als «feature-selection» getaggte Fragen

Methoden und Prinzipien zur Auswahl einer Teilmenge von Attributen zur Verwendung bei der weiteren Modellierung

2
Welche Funktionen werden im Allgemeinen von Parse-Bäumen beim Klassifizierungsprozess in NLP verwendet?
Ich untersuche verschiedene Arten von Analysebaumstrukturen. Die beiden weit verbreiteten Analysebaumstrukturen sind a) Wahlkreisbasierter Analysebaum und b) Abhängigkeitsbasierte Analysebaumstrukturen. Ich kann beide Arten von Analysebaumstrukturen mit dem Stanford NLP-Paket generieren. Ich bin mir jedoch nicht sicher, wie ich diese Baumstrukturen für meine Klassifizierungsaufgabe verwenden soll. Zum Beispiel: Wenn ich eine …


1
Merkmalsbedeutung mit kategorialen Merkmalen mit hoher Kardinalität für die Regression (numerisch abhängige Variable)
Ich habe versucht, Feature-Wichtigkeiten aus zufälligen Wäldern zu verwenden, um eine empirische Feature-Auswahl für ein Regressionsproblem durchzuführen, bei dem alle Features kategorisch sind und viele von ihnen viele Ebenen haben (in der Größenordnung von 100-1000). Da bei der One-Hot-Codierung für jede Ebene eine Dummy-Variable erstellt wird, gelten die Feature-Wichtigkeiten für …

1
Feature-Auswahl mithilfe von Feature-Wichtigkeiten in zufälligen Gesamtstrukturen mit Scikit-Learn
Ich habe die Feature-Wichtigkeiten in zufälligen Wäldern mit Scikit-Learn aufgezeichnet . Wie kann ich die Plotinformationen zum Entfernen von Features verwenden, um die Vorhersage mithilfe zufälliger Gesamtstrukturen zu verbessern? Dh wie kann man anhand der Plotinformationen erkennen, ob ein Feature nutzlos ist oder die Leistung der zufälligen Gesamtstrukturen noch schlimmer …

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 




3
Beste Sprachen für wissenschaftliches Rechnen [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Es scheint, als ob in den meisten Sprachen …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

4
Wie kann man die Leistung von Feature-Auswahlmethoden vergleichen?
Es gibt verschiedene Ansätze zur Merkmalsauswahl / Variablenauswahl (siehe zum Beispiel Guyon & Elisseeff, 2003 ; Liu et al., 2010 ): Filtermethoden (z. B. korrelationsbasiert, entropiebasiert, zufällige Waldbedeutung basierend), Wrapper-Methoden (z. B. Vorwärtssuche, Bergsteigensuche) und eingebettete Methoden, bei denen die Merkmalsauswahl Teil des Modelllernens ist. Viele veröffentlichte Algorithmen sind auch …

4
Merkmalsauswahl und Klassifizierungsgenauigkeitsbeziehung
Eine der Methoden zum Auswählen einer Teilmenge Ihrer verfügbaren Merkmale für Ihren Klassifizierer besteht darin, sie nach einem Kriterium (z. B. Informationsgewinn) zu ordnen und dann die Genauigkeit mithilfe Ihres Klassifikators und einer Teilmenge der eingestuften Merkmale zu berechnen. Wenn Ihre Features beispielsweise A, B, C, D, Ewie folgt sind …



3
Können GPS-Koordinaten (Längen- und Breitengrad) als Merkmale in einem linearen Modell verwendet werden?
Ich habe Datensätze, die unter anderem GPS-Koordinaten (Längen- und Breitengrad) enthalten. Ich möchte diese Datensätze verwenden, um Probleme zu untersuchen wie: (1) Berechnen der ETA, um zwischen Start- und Endpunkten zu fahren; und (2) Schätzen des Ausmaßes der Kriminalität für einen bestimmten Punkt. Ich möchte ein lineares Regressionsmodell verwenden. Kann …

2
Was tun, wenn das Testen von Daten weniger Funktionen als die Trainingsdaten hat?
Angenommen, wir prognostizieren den Verkauf eines Geschäfts und meine Trainingsdaten weisen zwei Funktionen auf: Eine über den Ladenverkauf mit den Daten (das Feld "Laden" ist nicht eindeutig) Eine über die Geschäftstypen (das Feld "Geschäft" ist hier eindeutig) Die Matrix würde also ungefähr so ​​aussehen: +-------+-----------+------------+---------+-----------+------+-------+--------------+ | Store | DayOfWeek | …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.